
 Background Analysis and Design
of ABOS, an Agent-Based

Operating System

Author: Mikael Svahnberg, pt94msv@student.hk-r.se

A Software Engineering Master’s Thesis at the University of Karlskrona/Ronneby, 1998.

Author
Mikael Svahnberg, pt94msv@student.hk-r.se

Advisor s
Håkan Grahn, hakan.grahn@ide.hk-r.se

Paul Davidsson, paul.davidsson@ide.hk-r.se

A Software Engineering Master’ s Thesis at the Univer sity of Karlskr ona/Ronneb y, 1998.

Abstract
Modern operating systems should beextensible andflexible. This means that the operating system
should be able to accept new behaviour and change existing behaviour without too much trouble
and that it should ideally also be able to do this without any, or very little, downtime. Furthermore,
during the past years the importance of the network has increased drastically, creating a demand for
operating systems to function in a distributed environment. To achieve this flexibility and distribut-
edness, I have designed and evaluated ABOS, an Agent-Based Operating System. ABOS uses
agents to solve all the tasks of the operating system kernel, thus moving away from traditional
monolithic kernel structures. Early results show that I have gained in flexibility and modularity, cre-
ating a fault-tolerant distributed operating system that can adapt and be adapted to almost any situa-
tion with negligible decrease in performance. Within ABOS some tasks has been designed further,
and there exists a demonstration of how the agent-based filesystem might work.

Keywords: Operating systems, Practical application of multi-agent systems

1

 Table of Contents

1 Introduction
1.1 Overview.. 3
1.2 Current Praxis.. 4

UNIX.. 4
Windows NT.. 4
Amoeba... 5
Mach ... 6
CORBA ... 6

1.3 Ongoing Research... 7
Spring.. 7
Aegis ... 8

1.4 Summary ... 8

2 Agents
2.1 Introduction .. 10
2.2 Agent characteristics ... 11
2.3 Multiagent systems.. 13
2.4 Agent enablers... 14

KQML .. 14
April ... 15

2.5 Operating system agents... 15
TACOMA... 16
MOTIS and X.400 ... 16
UNIX Daemons ... 17

2.6 Motivation to use agents.. 18

3 Operating System Tasks
3.1 Introduction .. 19
3.2 Process Management.. 19
3.3 Memory Management.. 20
3.4 I/O Management .. 21
3.5 File system Management... 22
3.6 Communication support... 22
3.7 Synchronization ... 23
3.8 Security.. 24
3.9 Summary ... 25

2

4 Top-Level design of ABOS
4.1 Introduction .. 26
4.2 General layout.. 26
4.3 Core ... 27
4.4 Kernel .. 28

Division between kernel and core 29
4.5 Services... 29
4.6 User Applications... 30
4.7 Summary ... 30

Assignment of functionality ... 31
Service layer ... 32
The chicken and the egg problem................................... 32

4.8 Achieved goals... 33

5 Examples
5.1 Introduction .. 34
5.2 Agent File system .. 35

Active Documents ... 35
5.3 Resource Allocation... 37
5.4 Synchronization ... 39
5.5 Summary ... 41

6 Evaluation
6.1 Introduction .. 43
6.2 Process management.. 43
6.3 Memory Management.. 44
6.4 I/O Management .. 45
6.5 File system Management... 46
6.6 Communication support... 48
6.7 Synchronization ... 49
6.8 Security.. 49
6.9 Performance .. 50
6.10 Other.. 51
6.11 Summary ... 52

7 Conclusions
7.1 Summary ... 54
7.2 Conclusions ... 54
7.3 Future work.. 55

3

1. Introduction
This chapter will give an overview and background for the thesis, as well as presenting a survey on
what the current status is in the common operating systems. Futhermore the trends regarding oper-
ating systems in the research community will be investigated.

1.1 Overview
Requirements on modern operating systems are that they should be extensible and
flexible [6]. This means that the operating system should be able to accept new behav-
iour and change existing behaviour without too much trouble. In truly distributed envi-
ronments they should ideally also be able to do this without any, or very little,
downtime. This is due to the trouble of for example migrating processes running on
the machine in question. During the past years the importance of the network has
increased drastically. Thus, operating systems also need to be more or less distributed.

As always, performance is also an issue. The traditional way to solve performance
problems is to embed everything into one single, monolithic kernel, while still using a
microkernel design and object-oriented programming to achieve flexibility. This
enables modules to communicate via shared memory and simple procedure calls,
instead of using the overhead of inter process communication (IPC). Obviously, this
embedding is in conflict with the requirement of flexibility. When every new function
has to be imported or implemented in the kernel space, one cannot easily add new ser-
vices on-the-fly. Indeed, it is also the exact opposite of what one wishes to achieve by
using a microkernel design. The cause of this embedding is, as stated, the overhead of
using IPC calls. However, recent studies [1] have shown that the overhead for IPC
calls has decreased enough to make this a practical approach.

The benefits one can gain by using IPC to communicate within the kernel are substan-
tial. Modules can be exchanged during run-time and new ones can be added without
having to reboot or recompile, which sometimes is the case. New strategies and
resources can be changed and added as easy as they should be. By using IPC, one can
also easily and transparently run some of the services on another machine, thus creat-
ing a truly distributed system.

A concept that is beginning to see the light and that can address the questions above is
agents. Agents are small software components with certain qualities, described later in
this paper. Interesting about agents is that they are autonomous, uses IPC and can
adapt over time. This makes them highly suitable for employing within an operating
system kernel. My idea is to explore whether agents can be used to facilitate the tasks
in an operating system. I aim to present a model where agents reside within the kernel
of an operating system. Furthermore, I will present a design solution for some com-
mon tasks that a distributed operating system performs.

This thesis will present a brief overview of the most commonly known operating sys-
tems, followed by a presentation of some of the research performed in operating sys-
tems. Succeeding this there is a presentation of agents and agent technologies to
clarify what an agent is. There is also a survey showing what attempts has been made
to apply agents in operating systems. To get some understanding of what the require-
ments and problems are in a modern operating system the section following this sur-
vey will deal with what an operating system should perform. Once this is clear we can
move on to the presentation of ABOS, an agent-based operating system. Some exam-
ples of more top-level tasks are also given, after which it is time to evaluate the agent
operating system. This is done and topped of with some concluding comments.

4

1.2 Current Praxis
In this section, I will present some of the more well-known operating systems. Some
of them are maybe not so well known, but they are representatives of a group of oper-
ating systems. No one can write anything about objects and agents without mentioning
CORBA, so I will present this as well.

UNIX
UNIX is the gathering name of a number of operating systems that share some equali-
ties. UNIX systems usually rely on one of the two “grandfathers of all UNIX’s”, Berk-
ley UNIX and System V. This may sound as if there exists many different
implementations of UNIX, but these are basically just differentvariations of the over-
all architecture.

UNIX is structured as a number of layers, with the hardware at the bottom. On top of
this is the parts that run in kernel mode like process management, memory manage-
ment, I/O and the filesystem. The bottom level in the user mode consists of standard
libraries like open, close, read, write, fork etc. The top-layer consists of the programs.
These can be anything from shells, editors and compilers to databases and advanced
applications.

Distribution is not a part of the original UNIX, even though networking was an early
part of it. The distribution is, in fact, limited to the ability to remotely execute pro-
grams and a filesystem that allows transparent mapping of remote disks. The kernel
layout in itself varies much from differentversions but generally one cannot exchange
kernel parts without restarting the system. From this I draw the conclusion that the
various tasks of the kernel is highly intertwined.Some parts, like time synchronization
and, in fact, most of theotherfunctionality runs in user mode.

Windows NT
Windows NT1 is a single-user multi-tasking operating system developed by
Microsoft. This is one of the few operating systems around that was developed com-
mercially from the beginning. The basic assumption for the design of Windows NT is
that people will be using the same machine, probably residing on their desktop, but
they might want to run more than one application simultaneously. [8]

The structure of the kernel is rather complex, and is easier explained by an image (Fig-
ure 1, as presented by Stallings [8]) than by text. Unlike UNIX the system is not truly
layered and unlike Aegis, Amoeba, and Mach(see below)much of the control code
resides in kernel mode. The Hardware Abstraction Layer makes the implementation of
Windows NT platform independent and the subsystem architecture makes it client
independent.

The layout of the NT Executive enables a great flexibility in the choice of for example
process manager. Much of the kernel resides in DLLs, dynamically linked libraries,
which makes it easy to exchangeparts like the security manager. Novell utilizes this in
their directory service for Windows NT[12]. It is a pity that Microsoft has not taken
care of this flexibility and support the exchange of kernel modules by providing open
interfaces and explicit support for third-party developers.

1Windows NT is a registered trademark of Microsoft Corp.

5

Windows NT has many shortcomings like not being able to distribute load over the
network, not even in the crude way UNIX does. Having most of the system running in
kernel mode makes it very hard to adapt new services without rebooting. As men-
tioned, the subsystem layout ensures that the kernel is essentially ‘client independent’
since both OS/2 and POSIX applications can run on top of the NT kernel. This is used
in some UNIX ports for Windows NT[13].

Amoeba
Amoeba [7] is a distributed operating system, developed as a research project by
Andrew S. Tanenbaumet al. at the Vrije Universiteit, Amsterdam. The goals of
Amoeba is to be a transparent distributed operating system. This means that the user
should not be aware that he is using more than one computer while working. In con-
trast to many other approaches the load is balanced across the entire system without
preference to a specific machine. Two assumptions are made about the hardware, that
both limits and aids Amoeba: Systems will have a very large number of CPUs and
each CPU will have tens of megabytes of memory. Based on these assumptions
Amoeba is designed to use a pool of processors, accessed via X-terminals.

The basic layout of Amoeba is that of a microkernel that manages processes, threads,
memory, communication, and low-level I/O. Clients and servers rest on top of this
microkernel. As with the case of Aegis everything fromfile systems to resource allo-
cation are managed through servers that run in user space. The notion of objects is
central to Amoeba. Everything is encapsulated into an object and managed by a server.
Objects are accessed using a cryptographically protected capability, a handle to the
object. All access to servers is done by using a system-global port number. This port
number ispresent in all object capabilities so that one can easily find the responsible
server process. The port number is not machine specific so if a server migrates to
another CPU or system the port number will remain the same.

Amoeba is based on many outdated assumptions, that have sprung from the correct
assumptions about many CPUs and lots of memory. The processor pools in the style of
an ancient mainframe that Tanenbaum assumes will, I argue, not happen again. My
prediction is that the ongoing trend with more CPUs sharing the same memory space
in servers as well as in some clients will continue and even though Sun, Oracle, and

Hardware

Hardware Abstraction Layer (HAL)

System Services

Kernel

I/O Manager

Object
Manager

Security
Reference
Monitor

Process
Manager

Local
Procedure

Call Facility

Virtual
Memory
Manager

File Systems
Cache Manager

Device Drivers
Network Drivers

NT Executive

Kernel Mode

User Mode

Win32
Subsystem

POSIX
Subsystem

OS/2
SubsystemSecurity

Subsystem

Log-on
Process

Client
Applications

Protected
Subsystems
(Servers)

Applications

Figure 1. Windows NT Structure

6

IBM are making a great show about their thin clients, so called NCs[14], no one is
talking about removing the processing power from the clients. The alternative, to have
dedicated workstations that are part of the processor pool, is visible in today’s cluster-
ing techniques[15], but only organizations with high requirements on servers will use
clustering. In the case of memory, Tanenbaumet al were correct in that machines will
have tens of megabytes of memory, but their assumption that this excess would be
theirs for the taking to achieve performance is proven wrong by the applications of
today that sometimes requires even larger amounts of memory for themselves.

Be thatas it may, Amoeba shows many bright ideas as well. To start with, it is distrib-
uted in the deepest sense of the word with process migration and communication prim-
itives supported by the kernel. As with Aegis, most of the system runs in user mode,
thus enabling fast and easy switching of functionality.

Mach
Mach [9] [10] is perhaps the most well-known microkernel operating system. It was
initially developed as a research project at the university of Rochester and continued
by Carnegie Mellon University. The goal of Mach is to demonstrate that you can
structure operating systems in a modular way.

Mach has a microkernel that performs process and thread management, memory man-
agement, communication, and I/O services. On top of this microkernel rests, in user
space, a software emulator layer. In this layer other operating systems are emulated
like UNIX, Windows NT, or even another Mach kernel. File systems and other handy
stuff are managed by these emulators. Mach supports communication between pro-
cesses at kernel level using the concept of ports. Ports reside in the kernel and acts as
message queues.

The microkernel architecture in Mach is limited to relying on an operating systems
emulator running on top of the kernel. The advantages one can gain by exploiting the
microkernel is thus left to the capriciousness of the emulator. The fact that IPC is sup-
ported in the kernel only makes the situation worse since it inhibits the emulators from
implementing smarter or more suitable primitives. As it is, all they can do is to act as
an interface to the Mach ports. The reason for this emulator strategy is, I think, to sup-
port as wide a range of software as possible.

I have found no evidence of the kernel itself being modularized, and distribution
seemsnot to have been the main issue when developing Mach although it does support
inter-machine communication using the Network Message Server [7].

CORBA
CORBA [11], or Common Object Request Broker Architecture, is a standard defined
by OMG, the Object Management Group. CORBA is not in itself an operating system,
but it has become somewhat of a standard if one wishes to communicate with objects
over a network.

The CORBA design is usually described as if the CORBA ORB, object request bro-
ker, replaces the network. Clients are hooked on to the ORB and perform their
requests to an object, running somewhere else. The actual communication work is usu-
ally done by stubs on the client side and skeletons on the server side that in turn calls
the actual object. The stub can be replaced by a Dynamic Invocation Interface, allow-
ing you to access the object anyway using an Interface Definition Language defined
by OMG.

7

Many of the research operating systems [17] [18] use stubs to access the services in
the object-oriented kernel. CORBA has the possibility to use stubs, but can also call
objects dynamically. This introduces a great flexibility. As we will see with agents fur-
ther on a language for invoking objects must be defined for agents as well. In the case
of CORBA they use their own IDL. The trouble is that it is only possible to send data
as if it were a normal function call. You must also be aware of which functions that
you can call, whereas agents usually have a common language in which they can talk
about what to talk about. The calls are also synchronous, meaning that the caller is sus-
pended until an answer is returned. Furthermore a function call reeks somewhat of cli-
ent-server which, as we will see, is not compatible with the agent paradigm.

CORBA is usually implemented on top of the operating system, as a part of the appli-
cations that wishes to use it and as a separate ORB. Having to rely on kernel-level
primitives to actually send data inflicts performance. As yet, I have not seen any oper-
ating systems that support CORBA in the kernel.

1.3 Ongoing Research
Having presented some of the popular operating systems and object enabling tech-
niques I will now move on to the research community with focus on what is being said
and done in the field of operating systems. In particular, two research projects shine
more than the others. These are Spring [5] from Sun and Aegis [6] from M.I.T.

Generally, the research in operating systems tends to be much aimed at object-orienta-
tion. There is much discussion regarding persistent objects, migrating objects and pro-
cesses [3], and even omnipresent objects [4]. One of the main issues seems to be to
invent a global naming scheme to be able to find objects over the network. Persistent
objects discussions seems to be aimed at how to store objects without loosing too
much in performance. All in all, there is much emphasis on how and not so much on
what to do. The research on objects are on varying levels of detail. Some suggest ker-
nel support [2] for persistent objects and others deal with more abstract reasoning on
how to name objects in a global network [19].

Spring
Spring is an experimental distributed environment developed at Sun Microsystems. It
consists of a distributed operating system and a support framework for distributed
applications. Briefly one can describe the structure of Spring as being a set of inter-
faces rather than actual implementations. This is a decision taken to support the cre-
ation of many differing implementations of a given interface. Spring has a specified
interface language [17] in which all interfaces should be written. From these defini-
tions stubs are generated for the programming language of choice.

Spring has a somewhat different object model compared to other approaches. A stan-
dard approach is to have an object reference locally that points to a remote object.
Spring distributes the actual object, making sure that it can only exist in one place at a
time. Before passing the object on one can make a copy of it. These two objects will
then point to the same underlying state.

The kernel in Spring is object-oriented, and all access to objects in the kernel is done
through stubs defined in the IDL. At a quick glance this looks as an agent system
except that the IDL and calling mechanisms is as limited as that of CORBA in that it
works like ordinary function calls.

Nevertheless, Spring is a serious effort to make a flexible and modularized system but
I have not found evidence that the objects in the kernel can be replaced during run-

8

time, which is a requirement to make the system run-time flexible. Spring is stuck in
the old client-server paradigm and assumes that a server should only reply with an
answer and not ‘talk back’ to the client.

Aegis
Aegis is developed at the M.I.T laboratory for Computer Science. The goal of the
project is to prove the point that operating systems need not act as an abstraction layer
for applications. The underlying idea behind Aegis is that the only task that the operat-
ing system should perform is to allocate resources securely to client applications. This
is because the authorsfeel that operating systems have become increasingly large in
their pursuit to support every available device in every possible desired way. As they
put it: “Applications know better than operating systems what the goal of their
resource management decisions should be.” [6]. This implies that as long as security
can be guaranteed everything from caching to actualfile system layout should be
handed over to the client applications. These can then, by using library operating sys-
tems, access the hardware.

The functions that the exokernel performs can be summarized as to securelyexpose
hardware, expose allocation, expose names andexpose revocation. This means that it
should expose as much of the hardware, its DMA capabilities, etc. as possible and that
all allocation should be done in consensus with the library operating system. Physical
names should be exported, and the kernel should visibly reclaim resources according
to a defined protocol.

The layout of Aegis is more of a standard operating system than a distributed ditto. No
emphasis is put on distributing objects or similar topics of interest in distributed oper-
ating systems. Flexibility is achieved by minimizing the kernel functions.

Aegis may not have much to do with the construction of a distributed operating system
but it’s design proves a very important point; user-mode software can equally well
manage resources as the kernel. This theory is used in many other more interesting
operating systems like Amoeba and Mach. It also implies that the kernel can be mini-
mal and still provide the functionalityrequired.

1.4 Summary
A general trend in the newer operating systems seems to be to move as much as possi-
ble away from the kernel. It is interesting to notice that the operating system that
increases most in usage[16], Windows NT, goes in the exact opposite direction by
adding more and more functionality to the kernel.

Distribution seems inmost cases (except Amoeba) to be to show the user that there
exists more than one computer in the network, sometimes giving the user a possibility
to execute software remotely.File systems are centralized and shared across the net-
work. Inter-process communication is many times cumbersome for the applications
and the possibility for it is often added to the system almost as an afterthought.

Exokernel

Hardware

Application

library OS

Application

library OS

Application

library OS

Figure 2. Aegis design

9

The only development company that has truly spent time trying to make a modular-
ized, distributed, and flexible system is Sun with their Spring system. However, the
object invocation in Spring suffers from the same disadvantages as CORBA in that
you must know the names of the functions to call.

All of these problems can be addressed if one uses the abilities in a microkernel archi-
tecture to load and lose modules at run-time. Another aid needed is to give ample sup-
port for inter-process communication and inter-machine communication.

File systems, finally, is traditionally viewed as part of the kernel and in some extent it
has to be so that at least the file system server can be loaded but there is no need to
view the entire file system, its ability to be shared, or its caching mechanisms as part
of the kernel. By utilizing the microkernel design once again, file systems of arbitrary
complexity may be built.

10

2. Agents
In the previous section I presented some of the operating systems around, and the research being
performed in the area of operating systems. The main focus of this survey was what could be
regarded as agents or modular design in operating systems of today. Agents were mentioned in the
previous section, but to get a better understanding of the concept they require more explanation.
This chapter tries to present such an explanation. The explanation is followed by some examples of
agents and their uses in connection to operating systems.

2.1 Introduction
The software industry was revolutionized when object orientation was introduced in
the early 1970:s [20]. The critics claimed that object orientation did not contribute
anything new; that in theory you could not do things that you had not managed before,
and that the Church-Turing thesis about computability [21] still held. Indeed, you
could not do anything new with object orientation; it did not make non-computable
problems computable all of a sudden. What object orientation did, however, was to
bring structure into chaos. Development times decreased, the amount of re-use
increased, and the training time of new staff decreased since they did not really have to
understand the entire system before starting to work on some part of it [22].

Agents provide the same paradigm change as object orientation once did, but this time
on the level of processes. Just as object orientation introduced a new level of abstrac-
tion, agents introduce another, even higher abstraction level. Instead of having one
enormous piece of software that encapsulates all functionality, agents are usually
small modules with very well-specified purpose that interacts with other agents to
achieve some specific goal contributing to the desired total functionality. Naturally,
the benefits from such a design is best found in distributed computing. By having pro-
grams that are socially aware of other programs on the network, you can distribute
tasks and control over the network. It is also very easy to exchange parts of the func-
tionality by adding new agents that either influence the existing agents to achieve the
goal differently or to replace some of the earlier agents altogether.

When designing an agent solution, there is a major difference compared to an object
oriented design. In object orientation you design according to the objects that consti-
tute the actors in the solution. Agent designing is task-oriented. Instead of looking at
what actors are involved in an operation, you look at what tasks and subtasks the oper-
ation consists of. Agents are then created to solve these tasks. Whereas object orienta-
tion does not say anything about the actual tasks but rather expects the objects to solve
them implicitly, agent orientation concentrates on the tasks at hand and creates actors
that can help in solving these tasks. An agent has thus a clearly outspoken goal with its
existence, and this goal is part of the design, decreasing the need for a design rationale.
Despite these differences, it is not my intention to say that object orientation cannot
coexist with agent orientation. An agent can very well be composed of a set of objects,
just as an object can be a complete agent and an agent can be considered to be a com-
plex object.

Agents bring enormous advantages in conceptual grasp of what is done, but you can
still not do more than before. Still the Church-Turing thesis hold. Calculations of algo-
rithmic complexity are still valid, and NP-complete problems still take exponential
time to solve. However, you can distribute the algorithm to more than one computer,
thus engaging the CPU speed in all of the machines. This is also something that has
been done for a long time, but with severe implications on the readability of the code
and lots of tricky protocols and communications overhead.

11

Despite all of the benefits one can gain by using agents, there is no clear definition of
what an agent is. People tend to claim that they have developed an agent solution
because it is state-of-the-art technology, even when it is nothing more than an ordinary
program. To create an understanding of my view of what an agent is, a definition of
what I see as an agent will be presented. This definition is vital in order to understand
the intentions of the rest of this paper.

I will explain what is needed to be called an agent according to the general opinion,
and top this off with my view of what an agent should do. I will explain how agents
work together, what communication protocols they use, and what a multiagent system
is. An investigation of what has been done about agents in relation to operating sys-
tems is rounded off by motivating why agents are so suitable for this particular use.

2.2 Agent characteristics
So far, the agent community experiences troubles in determining what should be
called an agent, and there are as many definitions as people trying to define agents.
This diversity of agent definitions is both an advantage and a disadvantage. The
advantage is that one can easily fit in much new and interesting behaviour into the
agent paradigm, whereas the disadvantage is that you can never tell that “this is an
100% agent”. The only thing one can say is that a program is more or less of an agent,
with respect of how many agent qualities it possess and to what extent. A definition of
the agent qualities that I like, because it is fairly simple, is summarized by Hyacinth S.
Nwana [24].

According to Nwana’s definition, an agent can bestatic or mobile. A static agent does
all its work from one single computer and has no wish nor mechanisms to move to
another host, asthe mobile agents does. An agent can furthermore be classified as
deliberative or reactive, where a deliberative agent has the ability to reason and can
plan its own actions to coordinate and negotiate with other agents. A deliberative
agent is also known aspro-active, because it can initiate a chain of events without
external influence. A reactive agent responds to changes in its surrounding environ-
ment according to a preset pattern. A reactive agent is idle until it receives some sig-
nal, which it then processes.

In addition to this, an agent must possess at least two of the qualitiesautonomous,
learning or cooperative. Autonomous means that the agents should be able to operate
without guidance from human operators. This also implies that they should be pro-
active, to take the initiative in causing changes rather than simply reacting in response
to the environment.Cooperation refers to the social ability to interact with other
agents and humans using some communication language. To achieve the sense of
smartness, anagent’s actions must be based on previous events, so it needs to be able
to learn what has happened, and use this learning when making decisions.

Figure 3 illustrates these qualities. If an agent is autonomous and cooperative it is said
to be collaborative. If it is cooperative and learning it is a collaborative learning agent.
An autonomous learning agent is called an interface agent because they are generally
interfacing towards the user, serving him in some way. Typical examples of interface
agents are personal assistants and customizable search agents.

The areas in Figure 3 are not definitive, it is just a statement of what areas a given
agent focus more on. The cooperativeness can, for example, have many degrees, rang-
ing from simple signals to complex messages in a communications protocol like
KQML [30]. I am also not entirely certain about the classification of autonomous
learning agents as interface agents. I can think of many examples where an autono-

12

mous learning agent does not interface to anything, but rather observes the environ-
ment to adapt its own behaviour.

Pro-activeness is a concept stressed by the agent community. The fact that a program
can take the initiative to start a chain of events is something that appeal to the agent
researchers as it emphasizes the fact that agents are autonomous. I claim that no pro-
gram can ever be pro-active. No matter how you see it, it is some external event that
starts the chain. The first event is always that the program is started. After this, many
other events of varying kinds can be the cause for the agent to react, but even if the
agent uses polling to check the state of something, it is bound to the timer events. If it
decides to enter a tight loop instead of falling asleep between the pollings, there is still
the start-up-event. Consequently all actions, even if they are preceded by two weeks of
computations, are the result of an external event, which means that the agent is reac-
tive and not pro-active. All of this makes it hard to say that an agent is pro-active. The
common definition of pro-activeness is that the agent reacts to some event and fore-
sees future results from this event and takes action against or towards these results. A
pro-active agent is thus a reactive agent that predicts future events and how pro-active
it is just a definition of how far into the future the agent can predict. If one views the
agent as a physical entity, for example some embedded equipment, the reasoning
about timer events above is falsified, because in such cases the timer event is gener-
ated by the agent itself. My reasoning still holds though, because the agent is still
started at some point and this is of course also an event.

Agents originated from the artificial intelligence (AI) community. AI researchers
being as they are tend to want agents to have all sorts of AI concepts like planners, the-
orem provers and such [34]. This strategy makes agents more complex and actually
more unfit for some tasks, being forced to carry around extra functionality. I claim that
an agent need not be smart as defined by the AI community to be called intelligent.
Indeed, Ekdahl argues against the use of terminology like intelligent, reflective, or
even learning software [35] since this is inherently not possible within a formal sys-
tem, and a computer can not perform anything which is not describable in a formal
system. My view is more relaxed. I have no objections to using the word smart or
intelligent about an agent, but my interpretation is that the agent is programmed in a
smart way or that it seems more intelligent in its behaviour than other software. As for
learning, I agree with Ekdahl that the only learning that a computer program can do is
to obtain information already present. This is also enough for the tasks that I see fit for
agent use, and is certainly enough to achieve a higher service degree by not repeating
mistakes and keeping faulty assumptions.

There is a common assumption that to be called agent, the software needs to be
mobile. Following the above definition, this is obviously not needed. The communica-
tion primitives ensures that you can reach any agent, no matter where it resides.

Cooperative Learning

Autonomous

Collaborative Learning Agents

Interface Agents

Smart Agents

Collaborative Agents

Figure 3. Agent Typology

13

Mobility does, however, give certain advantages in some situations, but requires the
agents to be small enough to be able to migrate. A task that require much communica-
tion can be done by sending an agent to negotiate for you, thus reducing the network
load. Another example is when your machine can be disconnected from the network.
In such cases, you can send off the agent onto the network first, then disconnect your
computer and connect it again somewhere else. The agent willfind you in your new
location and “dock” with your computer again, providing you with information you
have requested[33].

Agent systems can use one of two approaches; a federated approach or a fully autono-
mous [27]. In a federated approach agents are not truly autonomous and relies on sup-
port from a facilitator, an agent host. All communication goes through this facilitator
and it provides the agents with their view of the world. In the case where agents are
fully automated they keep track of their reality themselves and containsupport for
communication. This can be viewed as a standard process running on an operating
system, whereas the federated model looks more like threads within a process. If one
should use agents in an operating system the federated approach is naturally not feasi-
ble unless one sees the operating system kernel as the facilitator. To have one and only
one process running which manages the rest of the operating system as internal threads
falls on its own ridiculousness, even if it can be argued that this is exactly the situation
we are faced with in many operating systems today.

The ‘three-quality-model’, described above, says nothing about the size of an agent
and it may be hard to actually say anything about this. I claim that an agent should
have a limited but very well-defined behaviour. This enables modular programming in
multiagent systems according to the same principles that underlies Sun’s JavaBeans
[25] and Microsoft’s Active-X technology [26]. More complex behaviour is generated
by combining a set of agents that each perform a single task very well. Keeping the
agents small also facilitates the ability to migrate, which is often desired even if not
always needed.

2.3 Multiagent systems
Agents rarely come alone. Usually agents are part of some larger system of interacting
pieces of software. These systems are usually referred to as multiagent systems. In a
multiagent system each of the agents take care of a small and well-defined task. A sin-
gle agent need not be intelligent, but the total of the system achieves more than simple
behaviors.

One important thing to note is that the agents are peers. No agent is worth more than
others, and they have equal control. Even if some agent decides to solve a task by
breaking it down into subtasks and let other agents help in solving the subtasks, the
aides are not considered to be serving the one that had the initial task. The agent sys-
tem solves the task as a whole with no definition of what is client and what is server.
Hence, there are no rules as to who is allowed to send a message to whom, whereas in
a client-server solution the server is usually silent until the client initiates a communi-
cation link.

As with everything else, there is no single way to design these multiagent systems.
One way is to view the agent collaboration as that of a blackboard pattern [28], where
the agents communicatevia a server process, the blackboard.The blackboard is not a
server in the true sense, but rather a coordinator. It can contain the data that the other
agents put there and also decide who should get a chance to work with the data next.
The blackboard may in turn be distributed using a hierarchical tree of connected black-
boards. In a blackboard system all agents have equal status and control is handed out

14

by the actual blackboard to the most suitable. I claim that such a design violates the
idea of autonomicity since the agents do not get the right to decide for themselves who
is next to run. The idea to have certain agents that contain the shared state of many
agents is however sound. These could act as repositories for information needed by
more than one agent. They can also volunteer information to agents that they think
should do something about the information. Co-ordinating agents like the blackboard
agents are called intermediate agents.

Blackboard collaboration is just one of many ways to solve a task. One of the simplest
collaboration forms to grasp is that of subtasking. In subtasking one agent commits
itself to a certain task and divides it into smaller tasks that is handed out to other
agents, that in turn can subtask this even further [29].

Even if the agents are peers, they can either be cloned from the same agent, or they can
be specialized agents. Both of these strategies have their advantages. If the agents are
cloned, they need to contain everything needed for the entire model, even if they do
not exercise all of these skills at one given time. A multiagent system would, instead
of having severalagents each implementing the complete behavior, have agents that
each comprise a part of the solution. These partial solutions, albeit cloned, can
together see and solve the task at hand. The other form is to have a heterogeneous
environment in which no agent has to be like any other. As with the homogenous envi-
ronment these agents together see the full task and theentire environment, collaborat-
ing to solve their tasks. The difference here is that certain agents may have special and
unique skills, whereas in the homogenous environment all agents possess the exact
same skills.

2.4 Agent enablers
Having talked about agents in general and about collaboration models it may be inter-
esting to look at some of the techniques used for achieving this modularity andsocial
abilities. The agent community has more or less agreed upon a standard communica-
tions language, KQML [30], that supports the easy communication required. I will
present this language in brief, showing the main concepts of it. I will also present a
programminglanguage designed to facilitate the building of agents and agent systems.

KQML
To enable agents to talk to each other, you need a standard way of communicating.
The ideal language is called ACL, Agent Communications Language. This ACL is
commonly used by theoreticians when they need a language, but there exists no imple-
mentations or even definitions of ACL. A number of approaches has been made to this
ACL, of which KQML is one of the more well-known, together with FIPA’s proposal
[38]. A KQML message consists of a performative,and a set of arguments that states
who is the caller, the recipient, a message id and a reply-message id, which ontology
to use and finally the actual command or contents. The language of the contents is
stated as another argument and can be in for example Prolog or KIF[37]. The perfor-
mative states the type of the message, for example ‘inform’ or ‘request’, and the con-
tents contains the data of the inform message or the wishes for a request.

With this structure a KQML message looks very much like an e-mail message. I
believe that KQML is a sound approximation to the platonic ACL. The fact that the
message body can be stated in any language allows you to select the language most
suitable for the task at hand. On the other hand, you risk getting agents that are incapa-
ble of communicating with each other because they do not understand the language of
the other. As long as you understand the language used, you can understand messages

15

of arbitrary complexity in almost any discipline because the ontology used is stated in
the message. I am not saying that this is simple, only that it is possible. Implementing
support for ontologies is quite complex and may not be needed for simple homoge-
nous systems.

April
April [31] is a process oriented programming language developed at Imperial College,
London by Keith Clark et al. It contains ample support for creating processes and
communicate between the processes. Each process will have a unique identifier or a
handle associated with it. The identifier can either be provided by the programmer or
automatically generated by the system. An API is also provided that allows easy inte-
gration of April processes with external programmes. Making use of the API allows
these external programs to exchange April messages with ordinary April processes.
April gives the programmers an easy way to create agents. Communication primitives
and process management is handled by the April abstract machine, and is not depen-
dent on any underlying operating system. If the April abstract machine were to run
directly on top of the hardware, one could expect gains in for example performance.

As a programming language April provides just the primitives one would want in
order to develop agents. It is not visible to the user where process management is done
and the communication primitives are easy to use. Finding another process or agent is
a relatively easy task for the programmer. Code can be sent to execute in another
agent, enabling agents to learn new behaviour over time. All of this makes April an
example of a successful platform for implementing agents. As for communication,
April does not lock you into a certain language, on the contrary it can be used to
implement such languages. For example, you can use April to easily provide an imple-
mentation of the KQML communication language.

2.5 Operating system agents
With this definition of agents and how they interact in mind, it would be interesting to
see what has already been done with agents in operating systems. However, it is very
hard to find evidence of anyone attempting to support agents in operating systems.
Looking through both what is done in the operating systems community and the agent
community, few papers deals with agents and operating systems together. The
TACOMA project [23] has developed an agent platform for mobile agents. Another
example is the mail transfer system MOTIS [32], which is also an ISO-standard. The
most well-known example of agents in operating systems are probably the various
daemons in UNIX systems. They might not be known as agents but, as I will show,
they certainly are.

As seen earlier, many attempts has been made to define naming schemes for objects,
defining how to make objects persistent and so on. These objects usually lack the
autonomous quality or some of the other qualities needed to be called an agent. Also,
as said before, there is more emphasis on how to support objects rather than what the
objects should do. In the agent community, the situation is quite the opposite. Here
one assumes underlying communication primitives and support for agents exists and
works and instead defines the behaviors of the agents. Nevertheless, the discussions
are usually held on a high level, not giving any concrete examples of what needs to be
done and not one even hints at using agents to perform operating system tasks.

16

TACOMA
The TACOMA project is an exception to this ‘what’-wave visible in agent research
communities, since it is concerned with operating system support for mobile agents.
The TACOMA project uses mobile agents and the metaphor that they should do as
people; visit a place, use a service and move on. Granted, if the service to use involves
lots of communication or transactions requiring security, the mobility of the software
is a desired feature. For mosttasks, though, the network can equally well relay the
messages instead of the agent binary code. The TACOMA model also employs a
model with folders, or briefcases, to carry an agent’s state around the network. Sur-
prisingly, these folders are not part of the agent, but must be transferred to wherever
the agent wishes to use them.

TACOMA is implemented in Tcl/Tk[36] on top of a UNIX kernel. This means that
you need a Tcl interpreter on each host in the network, acting as a sort of facilitator for
the agents. With the TACOMA agent support, a mechanism for exchanging electronic
cash has been implemented to demonstrate its abilities. Agent-based schemes for
scheduling and fault-tolerance has also been implemented using TACOMA.

The main disadvantage of the TACOMA project is that they focus on mobile agents,
claiming that this is the only type of agents that the operating system needs to support.
They have built an agent platform in Tcl/Tk on top of a UNIX kernel, but still claim
that they have implemented operating system support for agents. Their main focus is
that of electronic commerce, adding solutions to the operating system tasks that are
needed for this such as fault-tolerance and security.

MOTIS and X.400
MOTIS is similar to the SMTP[32] in the TCP/IP suite. MOTIS, which is more a
complete message transfer system than a mere transfer protocol, is based on X.400
[32], defined by ITU-T. As with many ISO-standards regarding network protocols and
systems it is very well defined but rarely used. Most systems today use the standards
defined in the TCP/IP protocol suite.

The X.400 system can be characterized as having a User Agent (UA) that communi-
cates to a local Message Transfer Agent (MTA) using a Submit/Deliver Service Ele-
ment (SDSE). The MTA communicates to the recipient’s MTA using a Message
Transfer Service Element (MTSE). The recipient’s User Agent then acquires the mes-
sage from this MTA and presents it to the user. All in all, four protocols are used; one
between User Agents, one between the SDSEs and two between the MTSEs. MOTIS
looks very similar to the X.400 model but one MTA manages an entire site and acts as
a bridge to other sites via the X.400 pubic message handling system.

The X.400 system is illustrated in Figure 4 as presented by Halsall [32]. The users
communicate via a user agent to the SDSE. The SDSE connects to the local post office
and another SDSE. After going through some checks and systems the message exits
the post office via an MTSE to the recipient’s post office. From here on the path is
reversed on the recipient’s side. The UA polls an SDSE that in turn connects to the
local post office and receives the message. Communication from UA to UA is done in
protocol P2, SDSEs communicate via P3/P7 and MTSEs via P1.

MOTIS at least calls the different software components agents, and indeed they are.
The message system is autonomous in that it acts without a user interference. It can
take decisions on where to route a message, and a smart system might even learn cer-
tain routes over time. It is also collaborative consisting of several autonomous units
that communicate via defined protocols.

17

There are two major guidelines in the network society. The first one is to use as many
acronyms as possible, which is why I have included these above lest someone should
miss them. The other guideline is not to use ISO-standards. ISO-standards are gener-
ally newer, meaning harder to integrate with existing standards, than the commonly
used. They are also considered to be slower and causing more overhead because they
are better structured with more layers and this usually decrease performance.

UNIX Daemons
To say that agents have never been used in operating systems before is not entirely
true. In UNIX-systems much of the extra service that is provided and which is often
viewed as part of the operating system is managed by so-called daemons. A daemon is
a piece of software that takes care of some service, often listening to a certain commu-
nications channel. When requests come on this socket the daemon processes it accord-
ingly. Examples of such daemons are the telnet daemon, the www daemon, and the ftp
daemon. Other daemons react on the clock like the cron daemon, or on events in the
system like the syslog daemon. Some daemons like the pageout daemon can be con-
sidered to be part of the kernel, but I argue that it is not. The pageout daemon exists
merely to enhance performance by freeing memory for future use when the machine is
more idle than otherwise, but the operating system can manage without this memory
page cleanup by only evicting memory pages when needed.

These daemons have many qualities that would classify them as agents. They are reac-
tive, since they idly listen to a port or device until a request comes along. They are
autonomous, because they need no baby-sitting from the user, and the user is rarely
even aware of their existence. Many of them are social, communicating with the caller
according to some protocol to process the requests. In some cases like the sendmail
daemon they are also collaborative, helping each other in delivering e-mails to the
right user and the right place. Daemons like the telnet and ftp daemons does, however,
have some qualities that makes it dubious whether they really are agents. A program
that simply listens on a port and responds when spoken to belongs more to the client-
server paradigm than the agent paradigm. To be called an agent, the program would
need to be able to initiate communication using a peer-to-peer protocol. Nevertheless
daemons are the closest thing to agents to be found in operating systems today. A
common treat is that they provide additional functionality which is not needed by the

OS

UA

SDSE

OS

UA

SDSE

MS MTA

SDSE MTSE

Message handling system (MHS)

Message Transfer System (MTA)

User User

SDSEMTSE

MSMTA

P2

P3/P7 P3/P7P1

Figure 4. X.400 Functional model

18

operating system but provided as an extra feature. Indeed, some daemons are not even
provided together with the operating systems but have to be downloaded and installed
as any other software.

2.6 Motivation to use agents
As we have seen in the case of UNIX-daemons agents are suitable for many of the ser-
vice tasks in an operating system. Any task that requires monitoring of some device or
network socket should manage without interference from the user. As I also have
argued, such daemons are not quite agents but rather a standard client-server solution.
Within the operating system kernel there are other tasks where the subsystems work
more like peers. So does for example memory and process managers need to coordi-
nate their work to suspend a process waiting for a memory page to be read from disk. I
believe that by viewing the entire kernel of an operating system as a multiagent sys-
tem, you can benefit from the increased support for communication and the possibili-
ties to implement parts of the kernel with arbitrary levels of intelligence.

To have an operating system kernel that is composed of several stand-alone modules
that interact in a structured and extensible way gives enormous possibilities to create a
smart and extensible system. Instead of the standard interaction method of function
calls you can really maintain a dialogue between the subsystems. Hopefully this,
together with other techniques, will yield a more intelligent operating system. The fact
that parts of the kernel can be replaced during run-time and that you can add more
modules to help in a certain task makes such a system extremely flexible and extensi-
ble.

An operating system kernel that is composed of a set of autonomous modules, or
agents, can seamlessly be made into a distributed operating system by adding a global
naming scheme for the agents. You can, in fact, have a single memory and process
manager for an entire network. Or you can have the memory and process managers
communicate with each other to decide on scheduling policies as you would in a
multiagent system.

19

3. Operating System Tasks
This section takes a deeper look at what tasks an operating system should perform, presenting the
problems and pitfalls connected to each of the tasks. No attempt is made to solve the tasks, focusing
instead on giving an unbiased view of the problems. This chapter should be read as an introduction
to what I will attempt to solve with the agent-based operating system in the next chapter.

3.1 Introduction
A. Tanenbaum regards an operating system as either an extended machine providing a
better interface to and an abstraction from the actual hardware, or as a resource man-
ager providing support and control for hardware access [7]. The kernel should thus
hide the complexities of for example memory and process management from the
applications. It should also be able to allocate hardware to processes in a consistent
and coherent way. This extended machine should basically hide memory layout, disk
layout and I/O intrinsics. It should also hide the fact that more than one process is run-
ning on the same CPU from the applications. The last condition also implies that
applications should see resources as their own all the time, even if they are shared by
many other clients.

Using the ideas of Amoeba, Mach, and Aegis, thefile system can be managed by a
process running outside the kernel. Thereis also research suggesting that the kernel
need not bother about process management either, but that this can be managed via
CPU inheritance scheduling[39]. Aegis goes a step further, saying that the applica-
tions should themselves manage memory and I/O as well so that the operating system
can live the easy life just pointing at who should get to do the work next.The four
tasks identifiedare, however, not adequate for modern distributed operating systems.
They were barely sufficient for ancient single-user, single-computer operating systems
and distributed applications require more support fortheir distribution if they are ever
going to be developed at a large scale.

During the rest of thischapter I will present tasks needed for a distributed operating
system that, even if they may not be part of the kernel, needs to be addressed. Most of
the information below is fetched from Tanenbaum [7] and Stallings [8].

3.2 Process Management
Process management ranges from CPU-time sheduling to process creation. You first
need a way to create a process, either by creating a new process control block, or by
cloning an existing. While the process is running, you need to be able to suspendit and
let it wait for some device without consuming CPU time. The CPU should be shared
among a set of processes with different priorities. The user should preferably not
notice that he actually does not have one CPU for each program he runs, so priorities
needs to be shuffled in accordance to the user activity. Processes that are waiting for
something should not be kept running, since this is a waste of resources (CPU-time).
The user should be able to address the differentprocesses in some way, at least to be
able to kill or suspend them.

A common way to manage processes is to keep informationabout them in a process
table. The entry for a certain process typically contains itsprocess ID, its priority,
whether it is running or blocked andfor scheduling purposes the amount of time it has
been run. There is usually also information about the program counter, stack pointer,
open files, and memory blocks thatthe process controls. Scheduling differsbetween
various operating systems mostly in the way processes’ time quanta are handled.

20

One might think that process management must reside in the kernel, but UNIX System
V shows that this is not true. In System V, the processes manage most of the tasks
described above using library functions within the process itself. The only concession,
if you can call it that, is that the library functions are run in kernel mode. For standard,
non-mobile processes this is a fine and well-working model, but if processes have the
ability to move to another machine, it causes overhead ifthis codeshould be movedas
well. The operating system code may not be able to run on the receiving machine
either, since this host can be running another operating system in which the system
code will not work.

3.3 Memory Management
Memory management is simply the concern to provide each process with memory
mapped to its address space. This can be done simply by letting the process address all
the physical memory, or by providing a virtual address space to the process and map-
ping the memory contents to a certain place in the physical memory. Of course, in a
modern multi-process operating system you need the latter model since one of the
main ideas is that processes should not be aware of other processes unless they really
want to. Hence, it would not do if processes had to share memory space with someone
else. This would also cause great problems with security issues. The usual way to
solve the mapping between virtual memory to physical memory is by dividing the
memory into pages and to swap in pages as they are needed. This paging is performed
totally transparent for the processes, that does not know when it happens or how it
works.

Processes can be presented either with a full view of all the memory, or with a set of
segments, each comprising a part of the full address space. For some purposes this can
be practical but, since segmentation is usually achieved by utilizing some of the bits in
the address space to select the segment, I find segmentation rather pointless except as
a conceptual notion. Segmentation made more sense before hardware supporting pag-
ing was invented and implemented into computers.

Another thing to take into consideration is whether processes should be allowed to
share memory pages or not and, in such cases, how much and how to do it. Common
approaches to this is to share full pages or segments from a pool of memory pages.
This pool is often of a fixed size, thus limiting the amount of shared memory that the
system can manage. Lots of research have also been put into how to share memory in
distributed applications[40], letting processes on different hosts share memory as if
they were working with the same physical memory.

With memory management there is not much that can differ between different operat-
ing systems since this is mostly controlled by the hardware. Paging, being a practical
solution, is used by all modern operating systems and what varies is how selection of
pages to evict is performed. Shared memory, on the other hand, can be managed in
many different ways. It may for example be done blockwise or per segment basis.
Another thing that can vary from system to system is process migration and replica-
tion. Since these tasks do not specifically involve hardware, it can be done in any of a
number of ways.

As far as I can see, memory management can be handled in the same way as process
management, by library functions in each process. Some parts can also be handled as
stand-alone processes, e.g. swapping. In UNIX systems process 0 is the swap daemon,
managing all swap activity and also thestart-up of the first “real” process, the init dae-
mon. Paging may also be done in a separate process but the cost of context-switches
makes this solution impractical. A common approach is to have a separate pageout

21

process, responsible for freeing up memory to a certain level by paging out non-used
memory pages.

3.4 I/O Management
I/O management is something that is consuming an increasing part of the code in oper-
ating systems. This is due to a generally held conception that the operating system
should act as an abstraction layer between software and hardware, creating a uniform
interface to all types of devices. Especially needed is this on Intel-based systems,
where a plethora of possible devices exists.

The tasks involved in I/O and device management are numerous. Interrupts thrown by
the device must be caught somewhere and distributed to the right process. Processes
that have been blocked waiting for reply must be awaked (Which, in fact, is the pro-
cess manager’s task.). If the device communicates by direct memory access (DMA)
the operating system must allocate buffers and make sure that these are not paged out,
implying communication with the memory manager. Applications require intuitive
names on the devices, names that must be maintained and kept uniform. The ever so
important error handling must be managed and the operating system must throw errors
that make sense to the applications if they expect error messages at all. The operating
system must also decide whether the device can be shared by many users simulta-
neously, or whether applications must gain exclusive rights for the device.

I/O is usually handled by adding a device driver for each device to the operating sys-
tem kernel. These drivers are commonly linked into the kernel on start-up, so that one
needs to restart the computer for them to take effect or to delete one. The operating
system will then provide interface to these device drivers in a uniform way so that for
example disk drives are accessed in the same way as hard disks. Applications can
either communicate directly to the device driver or through yet another abstraction
layer handled by the operating system.

In some cases one wishes yet another layer, residing in user space mode. This layer
acts as a buffer, so that no application can lock the device indefinitely, blocking access
from others. Applications will instead talk to the buffer layer that can handle concur-
rent requests and queue them according to some criteria (e.g. ‘First In First Out’ or
‘Shortest Job First’). For devices visible to the network, someone needs to manage
queues and network communication to the device. This can be done either in the actual
device driver or in a layer resting on top of the device drivers.

What differs between operating systems regarding I/O management is mainly how the
devices are presented to the user and applications. At one extreme is UNIX, in which
all devices are presented as either character devices or block devices, and at the other
extreme is Windows NT, where you must basically know exactly what you want to do
before you do it. In UNIX you need no special knowledge of a certain device, just its
name under the ‘/dev’-directory, whereas in Windows NT you have to know that it is
for example an audio device you are going to communicate with using a certain audio-
API.

Usually the presentation scheme is deeply coded into the operating system kernel,
whereas management of different devices is done by pluggable device drivers. It
would thus be possible to make the presentation schemeinto a specific module as
well. This would yield a flexible operating system that can be tailored for specific
needs or use a general naming scheme if desired. Processes need some place to com-
municate to register interest in certain events that devices may throw. This can, conse-
quently, also be done in a certain replaceable module.

22

3.5 File system Management
Naturally, it would not do to present hard disks as simple block devices and ask of the
user and applications to try and find their way around this. Some more abstraction is
needed. Firstly something is needed to find out what block belong to what file, and
whether the files are stored sequentially or blockwise. These files need some handle
that can be presented to the user, and you will typically need some way to structure
these handles into groups, or directories. The operating system will also need some
strategyonhow to cache files.

File systems have come to a standstill with a structure of directories in which one puts
files. The files are commonly spread blockwise over the harddisk. How to find the
blocks vary; some use linked lists, others use i-nodes. There issome variation how
caching is performed and whether to use write-through caching or lazy writes. In some
cases, for example in database systems, you wish to access the raw disk device since a
standardfile system simply do not have the structure and hence not the performance
required. In such cases the operating system should preferably be able to present appli-
cations with a raw block device.

Having a localfile system is only half the truth. In order tofacilitate for system admin-
istrators, much of the software and home directories rest on a server, accessed via
some networkfile system. These networkfile systems usually try to maintain the same
protocols and access techniques as if they were localfile systems. Sun’s networkfile
system, NFS[52], uses a technique where you have a virtualfile system layer that
decides whether a call should go to a local disk or an NFS disk. The client applications
need thus not worry whether a call goes to a local disk or a remote.

In the past 20-odd years, not much has happened tofile systems. File systems from
different vendors use the same conceptual artifacts with files and directories. What
differs is how files are stored on the physical disk, and how they are accessed. How
disks and otherfile system media are presented to the user and system is another area
where different operating systems differ vastly, but the concepts are the same. Files
are dormant phenomenons, viewed as a storage dump for other applications. Fredriks-
son showsthat documents can very well manage their own activities, being more than
an passive occurrence [43]. I claim that this also holds for files at large. The time is
ripe for a paradigm change regarding files and how they are viewed. In Chapter 5 I
will explain further what such afile system would look like, and what benefits one can
gain by applying Fredriksson’s theories.

3.6 Communication support
The above presented topics are the ones that are traditionally viewed as the core func-
tionality of an operating system kernel. Most operating systems also provide mecha-
nisms for process communication. UNIX, for example, providespipes which is a basic
way to connect one thread or process with another. Amoeba, being a distributed sys-
tem provide a mechanism similar to pipes, but with support for inter-machine commu-
nication as well.

In a modern distributed operating system I think that communication, and especially
inter-machine communication, is highly important. Preferably, applications should not
have to define their own protocol for data either unless they really want to, and the
communication primitives should be intuitive and easy to use.

The problems regarding interprocess communication, IPC, are manifold. First of all
there is the question of binding an application to a communication layer so that the
application can receive data. Incoming data must somehow be transferred to the appli-

23

cation and its memory for processing, and outgoing messages needs to be transferred
from the applications memory to outgoing buffers or the recipients memory space.
Once this has been handled, there is the question of keeping connections alive so that a
two-way communication can be upheld and at the same time ensure that the messages
reach the right recipient. To get a connection, you need to have a name, or an address,
to the process you wish to communicate to. This name should be visible over the net-
work and it should also be possible to transparently send messages between machines.
Support must be included for both synchronous and asynchronous message transfer,
meaning that clients should be able to select whether they wish to block while the
transfer is done or continue immediately.

Once the basic primitives have been implemented, there is the question of providing
the programmers with an easy-to-use interface to these routines. RPC [41], CORBA
[11], and RMI [42] are examples of such APIs. These APIs generally tries to give the
illusion that you are calling a local function or a method in a local object, which puts
some demands on the underlying communication primitives. In some cases a higher
abstraction might use another API. It would, for example, be possible to implement a
CORBA API using RPC.

A good support for communication should also include group communication primi-
tives, with all the new problems that this brings. Group messages should be received
simultaneously, or be perceived to be received simultaneously. Messages should
arrive in the same order to all the recipients and you need some way to ensure that the
message actually reached all the recipients or whether you should do a rollback on the
operation.

Even if modern operating systems provide support for interprocess communication, it
is often only supported for processes on the same machine. Commonly, there exists no
easy-to-use low-level communication primitives to access other machines, and you
need to know exactly where you are going before you can start communicating. What
is needed is an API that makes it transparent whether the receiving process resides on
the same machine or not, and a global naming service to find it, no matter where it
may reside. This API could be implemented fully in higher-level layers, but for perfor-
mance reasons, and because inter-process and inter-machine communication is
becoming increasingly common, it is best housed by the operating system kernel.

3.7 Synchronization
Synchronization is related to communication, and especially group communication.
To determine the ordering of messages some sort of timestamp or uniquely ordered ID
is needed for each message. The easiest way would be if all the processes shared the
exact same time down to the nanosecond and to include the send-time in messages.
Combined with a host-based running ID this would make it an easy task for the recipi-
ent to figure out in which order to put messages and whether there are any missed mes-
sages.

However, due to imperfect crystals no computer clock ticks at exactly the same rate as
another. Hence computers need to update their clock at regular intervals with some
central time. This synchronization can either be done against a centralized clock or by
some distributed algorithm. It can furthermore work using a polling method or a
broadcast method. The troubles with having a distributed algorithm is that the syn-
chronization is not accurate to the nanosecond, or even microsecond, depending on
network traffic and machine load. For each step away from the original server this
variance will increase and at the same time decreasing the accuracy of the time mea-
surement. Other distributed algorithms exist in which each machine regularly broad-

24

casts its time, letting the others set their time as a mean value of all the times
broadcast.

A time server usually gets its values from some global place, for example the nearest
atomic clock, and the clients in a local network gets their time from the time server.
This design is used to reduce the load on the global time servers and because commu-
nication within the local network is probably faster than to the atomic clock.

Why, then, is time synchronization such a cumbersome task in networked computer
systems? In the ‘real world’, there exists a short wave radio station with call sign
WWV that broadcasts a signal at the beginning of each UTC (Universal Coordinated
Time) second. The accuracy of this signal is +/- 1 msec, but atmospheric disturbance
makes it accurate only to +/- 10 msec. The reason that this signal can be so accurate
when it cannot be so over a network cable is simply the fact that the WWV signal need
not compete with other traffic. Thus, if one could halt all network traffic when the time
broadcast is due, one could reach equal accuracy in this medium as well.Furthermore,
knowing how many metres of cable there is between client and server makes it easy to
calculate the propagation time.

For some strange reason time synchronization is not traditionally part of the operating
system. The system must manually be set up to synchronize its time with a server. On
UNIX systems a common entry in root’s crontab1-file is to set the clock against some
server. Berkeley UNIX, on the other hand, has a broadcasting method with a central
time daemon that generates a mean time of all the clients connected to it. To set the
time against an atomic clock, one often have to rely on third-party software like xntp
[44].

Time synchronization is only one of the problems, but it is certainly the most difficult
to solve. Other synchronization problems that need support by the operating system
are semaphores and monitors. Monitors can be implemented using semaphores, so you
in fact only need support for semaphores. To create a working semaphore you also
need some hardware support, the test-and-set assembly call that tests if a memory bit
is set and if not sets it. If it is already set, a message about this is returned and the pro-
cess can go and add itself to a queue for the semaphore. Semaphores are commonly
provided at a more abstract level as operating system calls. This call takes care of both
the flag-checking and the queuing. When the semaphore is released, the operating sys-
tem wakes up a suitable candidate from the waiting queue.

3.8 Security
One final topic that often is neglected is the issue of security. Security is related to all
of the above topics.File systems needs some access control, I/O devices should only
be accessed by authorized users, you should not be able to read data in another appli-
cation’s memory unless it explicitly gives you the right to do so, and unauthorized pro-
cesses should not be able to snoop network packages not designated to them.

Another aspect of security is fault tolerance.Force Majeur events like earthquakes or
power failures should preferably not result in loss of data, or the loss should at least be
minimized. The human factor, which is sometimes even more disastrous and definitely
more unpredictable than earthquakes or floods, should also beconsidered. Thus the
system should not crash or cause irreparable damage because of a simple human error.
A common cure against user errors is to require a certain access level to be able to do

1The cron-daemon runs tasks listed in the crontab at the specified time.

25

stupid things. Regardingforce majeur, there is not much one can do, since most fault
tolerance schemes result in lower performance. This is not to say that there is nothing
onecan do, it is just hard to make something fully fault tolerant. Database vendors
have had this problem since the very start, and there exists sound principles describing
how to achieve fault tolerance. In recent years the operating systems research commu-
nity has begun to realize this as well and papers concerning for example logfile sys-
tems[45] are beginning to emerge. Modern operating systems are also fairly fault
tolerant without any modifications or special schemes.

The area in which breaches occur most often and where the most improvement can be
made is in the area of protection against mischievous users and processes. In principle
one can say that for every feature you provide the user you create at least one security
problem. UNIX has long had the policy to trust its users to some extent. Hence, pass-
words are often sent as unencrypted text when connecting via telnet or ftp. The file in
which passwords are stored is also commonly available by default. To acquire access
to such a system is a mere matter of listening to the network traffic until someone
starts up a telnet session. Using publicly available software it is just a question of time
until one has decoded a number of passwords in the password file.

The reason for this naive approach in UNIX is the TCP/IP protocol, that does not
include coding. TCP/IP only spans level 1 to 4 in the OSI-model [32], whereas coding
and encryption is handled at level 6,thepresentation layer. The implementors of the
applications (like telnet and ftp) have not considered security as an issue, either ignor-
ing the problem or assuming that a lower layer has taken care of it.

3.9 Summary
As you might have guessed, one of my main goals is to deprive the actual kernel of as
much power as possible. The underlying theory behind this is the same as with aegis;
it is not the operating system’s task to manage resources, all it should to is to allocate
them to processes in a secure way. I argue that almost everything can be handled by
processes not part of the kernel. The kernel can accordingly be simplified enormously,
thus reducing its size and increasing flexibility.

As the situation is today, most of the tasks above are handledwithin the kernel. A
changein memory management or process management would result in a recompila-
tion of the kernel, and most certainly a restart of the system. Adding and removing
devices is a bit more flexible, but still often requires a restart. To add support for new
file systems is equally cumbersome, even if some operating systems like Linux han-
dles this fairly well[46]. As for security, the different subsystems often need to imple-
ment their own security check, or at least contact some global security manager before
executing certain commands. This model is a paradise for security breaches, all you
need to do is to make a service fault in such a way that the security check is skipped. A
better solution would be to go through a security layer before reaching the service
required.

In the previous section I explained the concept of agents. An agent is a small, stand-
alone piece of software that can easily interact with other software. I claim that such
agents are highly suitable for these kernel tasks, chiefly because of their flexibility and
ability to interact. In the next section I will describe a microkernel operating system
thatsupports these kernel agents.

26

4. Top-Level design of ABOS
In the previous section I described what tasks a modern operating system should perform. I made
no attempt at solving the problems I described. In this section I will design ABOS, an Agent-Based
Operating System. ABOS is an example of an operating system that uses agents at the kernel level.
As in the previous chapter, I will make no explicit attempt at solving the problems, but rather con-
centrate on the design and functionality.

4.1 Introduction
The trade-off between flexibility and performance often result in large monolithic ker-
nel structures where changes are done by recompiling the kernel. The kernels com-
monly only have one memory space because the cost for an in-process function call is
considered significantly lower than an IPC-call. As I have indicated earlier, the kernel
can be deprived of much control and still be functional provided that these tasks are
handled elsewhere. This ‘elsewhere’ could be small, autonomous server processes, so
called agents. Naturally, this also implies that IPC is today fast enough even for time-
critical tasks.

Today, agent platforms are usually built on top of an existing operating system. If we
are going to use agents in the kernel this is naturally not sufficient. I have earlier
described two agent models,the fully autonomous andthe federated agent platform.
Fully autonomous usually means that each agent is run as a separate process, whereas
in a federated system all the agents are run within a certain process, commonly called
facilitator. In the system I propose, the agents will be run as separate processes, but
they will still run on a core designed especially for the agents. In this sense the system
will host fully autonomous agents but still be a federated agent system.

There exists similar operating system platforms that support dynamic objects and
components like Shag/OS[47], GLOBE[49], and Paramecium[48]. I claim that the
step from dynamic or persistent objects to agents is not that far, and my work will rely
somewhat on the theories and conclusions of these and similar projects, but the ABOS
kernel is not quite like any of these.

In this chapter I will draw an outline of a flexible and extensible agent-based operating
system. Starting with the core I will work my way outwards to the end-user applica-
tions. I will not describe these in detail, but rather stop at the service level, where ordi-
nary operating system boundaries go. Exactly how the tasks in the operating system
are performed is not explained either, unless they are of particular interest for the
agent aspects.

4.2 General layout
Flexibility is commonly achieved by modularity. Modularity alone is however not
enough to achieve full flexibility. A kernel can be one large binary and still be built
with separate modules. In such cases you need to recompile the kernel and restartthe
machinefor every kernel level change. It will not help to store the modules separately
either. They are still loaded into a shared memory space and are highly dependent on
each other. By instead making the kernel extremely small and let everything in the
operating system be run by separate processes, the same flexibility and more can be
gained without recompilation and restart of the entire operating system.

ABOS consists of such a set of small and autonomous modules, or agents. They are
autonomous in the sense that they require very little support from other modules, and
even less support from the human users. The system is structured as a set of layers

27

around the core in the middle. The level of the services provided increase for each
layer. The hardware is accessed wherever it is feasible, not forcing calls to propagate
through more layers than is necessary. The layer structure is retained in spite ofits
decreased significance because it provide a conceptual structuring of the privileges
that processes within a certain layer should possess.

Figure 5 illustrates the various layers inABOS. The bottom layer is thecore system.
This system provides very basic support for process’ and memory management.
Around this layer is the actualkernel wrapped, providing more advanced process and
memory management. File systems are also defined in the kernel, as are more
advanced communication primitives and I/O management. Outside of the kernel layer
is aservice layer, providing things that are not part of an operating system kernel, but
are still part of the operating system like user management and resource allocation.
User applications, finally, are run on top of the service layer.

4.3 Core
At the very core of the system is the bootloader that in turn loads the core modules.
The core modulestake care of process management, memory management and com-
munication primitives. The modules support very little intelligence, just a basic sched-
uler and primitive memory management. In fact, they should only support the creation
and running of the advanced services in the kernel. It would also be convenient if the
core modules were the only modules that interfaced the platform-specific hardware
like CPU and memory, letting the kernel bother with the more strategic decisions.

The reason for this division between core and advanced service levels is to gain flexi-
bility. By keeping the services at this level simple, more interesting functionality can
replace the default without disturbing the low-level hardware interface. Itis, however,
not advisable to remove the core layer altogether since you need some support to get
the rest of the system up and running.

Process management is required at this deep level to be able to run the rest of the ker-
nel as separate processes. You need to have at least support for creating processes at
this level. More advanced process management can very well be handled at the kernel
level. The same reasoning holds for memory management. Once a process is created,
its code needs to be loaded into memory. Everything else can be done by library func-
tions within the process.

A process is created by a request to the process manager. The process manager ini-
tiates a process control block and assigns priorities etc. to it. A uniqueID is also gen-
erated and associated with the process. ThisID is used by all other processes to find
the newly created one. At this level, no automation is present, so you need an extra
request to the memory manager requesting a page allocation and the binary code to fill

user applications
services

kernel

core

Figure 5. General layout of ABOS

28

the pages with. With this allocation scheme it is easy to load the rest of the kernel
since the binaries are specified on creation. The bootloader can load the core and then
start to load the rest of the kernel using the core. As soon as enough of the kernel is
loaded for it to carry on by itself the bootloader can terminate.

The support for process communication is also placed at this low level, since the ker-
nel agents uses the available IPC mechanisms to communicate with each other and
with the core system. At this level the communication is restricted to simple pipes,
described in more detail below. Additional primitives to for example use a particular
communication language is handled by library functions within the other processes.
The core modules can of course also communicate with each other so that incoming
messages for a process results in a wakeup of the process and memory is freed upon
process termination.

4.4 Kernel
At the kernel layer the functionality is found that is more commonly part of the operat-
ing system. The following tasks are handled in the kernel layer:

• Final process management
• Additional memory management
• File systems management
• Communication naming schemes
• I/O management
• Network management

As seen in Figure 6, the core takes care of the basic memory management and process
management, whereas advanced services resides in the kernel layer outside of the
core. All managers should be considered agents, even those in the core. The core
agents have given up part of their independence, but they are still autonomous and
social. They all communicate using a predefined agent communication language,
ACL.

The final scheduling algorithms for processes etc. are handled at this level, using the
core process manager to do the actual switching of processes. Swapping and paging

Core

Memory
Manager

Process
Manager

Communication
Manager

Process
Manager

Memory
Manager

File system
Manager

Communication
Manager

Kernel Layer

Advanced

Advanced

Advanced

I/O
Manager

Network
Manager

DevicesDevice
Drivers

Devices
Other

Agents
Kernel

Figure 6. ABOS, kernel le vel

29

algorithms are categorized as advanced services, using the core functions when
needed to do the actual work. Listings of shared memory pools are also managed out-
side of the core, together with access information and authentication. The kernel
agents use the core communication management to access the advanced communica-
tion services. The advanced communications manager provide intelligible naming and
network-wide communication.

Letting the core manage all processor and memory access means that only the core
functions and perhaps the device managers need to be run in kernel mode.The rest can
very well be taken care of in user mode, even if it may be desirable for security rea-
sons to let other tasks run in kernel mode. Removing the need for other agents to be
aware of platform-specific details also means that there is a great flexibility to
exchange parts without affecting others and without needing to rewrite these agents
for every new platform.

Division between kernel and core
In the cases where you have a manager in the core and an advanced manager in the
kernel it is vital that there is a clear definition of what should be done in the kernel and
what should be done in the core. In my view the core should only manage the very
basic things, leaving all policy decisions and more complicated services to the
advanced managers in the kernel layer. Consequently, the core process manager
should only manage the creation of new process control blocks and run a process until
it yields or falls asleep on some operation. When a process is removed from the run-
queue, a new process will be selected to run. The most basic run-queues (running,
blocked, and ready) should be managed, but it should also be possible to create other
queues and move processes between the queues on command from the advanced ser-
vices. The advanced process manager should maintain these extra queues and com-
mand movement of processes according to its algorithms. Creating a process at the
kernel level can also include more than one operation in the core. Memory may be
allocated and communications channels set up, according to the advanced process
manager’s strategies.

The core memory manager should be able to allocate and deallocate virtual memory
pages to physical memory. It should be possible to fill an allocated page or a set of
pages with a binary string. The advanced memory management performs paging and
swapping to and from disk. Lists of which memory pages that are shared are main-
tained by the advanced memory manager. Page faults are handled by the core memory
manager, but the advanced memory manager has to be asked for what to do when a
page fault occur.

Communication at the core layer is merely a matter of receiving an address and a
string and deliver this to the right process, notifying the process manager that this pro-
cess should be put in the ready queue if it is blocked. At this level, communication is
done using pipes, similar to those used in UNIX.At the kernel layer, a process can cre-
ate more than one communication channel, or service, binding it to a certain name.
The kernel communication manager also has the ability to make a name visible over
the entire network, and forwards messages via the network manager to the right host.

4.5 Services
The service layer is wrapped around the kernel layer. In an ordinary operating system
there are tasks that belong to the operating system, but not to the kernel. These are tra-
ditionally run in user-mode with the help of kernel-mode programs and functions
when needed. It is my opinion that by adding a certain layer in the operating system

30

structure for such services, they may get the acknowledgment they deserve without
giving them too much power.

At this service layer things like resource allocation and time synchronization should
reside. It is also here that the users are managed. This is not to say that there doesn’t
exist a user notion in the kernel and core, but at the service level this user ID is
mapped against login names, authorities and restrictions, home directory paths and
environment variables, etc. Process migration should be provided as a service at this
level. Since this feature is not a part of the primary operating system functions it
should not be included at kernel level. Agents for encryption and authentication is
another thing that this layer provides. The reason is the same as for user management
and process migration. The operating system can manage without it, but it is a conve-
nience to provide support for it.

Since network management and communication is provided at a lower layer, the ser-
vice layer can be global for the entire network, creating a foundation for a distributed
environment and hiding the peculiarities of the individual systems. Many of the ser-
vices are global by their nature, like user management, but it might be practical to
duplicate the services to every machine for performance reasons. Since the services
are agents it is no problem for them to cooperate and propagate changes to other
machines in the network.

4.6 User Applications
The final layer is the user applications. These typically involve user interfaces and are
more interactive than the previous layers. A smart process manager could take advan-
tage of this information and manage processes’ time quanta and priorities accordingly,
giving larger quanta for services than for user applications. Reducing time quanta for
interactive processes is something which is utilized in Windows NT[50] where time
quanta differ between the server version and the workstation version of the operating
system. In both UNIX and Windows NT, every process that receives user input from
keyboard or mouse gets a boost in priority, which is another way of ensuring that user
processes gets the CPU time needed. By identifying processes as user applications or
system services, one can make such priority boosts even more fine-grained.

4.7 Summary
Comparing this operating system architecture with the commonly available kernel
architectures, it differs mostly in that the kernel functionality is run as a number of
stand-alone processes. The number of context switches increase, and hence the perfor-
mance decrease. However, the flexibility is increased manifold by allowing new ser-
vices to be added or replace old ones at runtime. For instance, you can install a new
release of the operating system without even having to restart the computer! Since the
functionality is all located in autonomous modules, all dependencies and open connec-
tions will still be open and valid when a new service is installed to replace an older
one. Unlike UNIX where almost the entire operating system is duplicated as library
functions into every process [8], the functionality inABOS is divided into stand-alone
processes.

The division into the four layers core, kernel, service, and user gives a possibility to
consider the type of process when scheduling and setting time quanta. Server pro-
cesses usually gain by running longer periods, user processes work better with smaller
time quanta. In a traditional operating system, there is usually only one rule when
scheduling is considered, namely to spend as little time as possible in kernel mode. As

31

there only exists two modes, user and kernel, you have no possibility to affect the
scheduling policies further.

Since the different parts of the kernel are no longer compiled together, one can think
that there are high demands on well-specified protocols and interfaces for the various
agents. This is true to some extent but not fully. You need a minimal set of commands
that are standard for each service, but each agent can provide any number of extra
functions as well. Agents can also reduce the original set of calls by simply ignoring
non-supported messages or reply with an ‘invalid command’ message. The point of
having at least a minimal set of commands is that the semantics of these method calls
can be coded into calling agents. On top of these minimal protocols, you can agree
upon a certain ontology in which you will talk to the specific agent.

To achieve the flexibility strived for, the calling protocols must define mechanisms to
take over control for specific tasks. So can, for example, a file-encryption agent take
control over the ‘write’ and ‘read’ commands from the file system agent, and in turn
call the file system agent to store the file once it has been encrypted. Another way to
solve this would be to tell the file system agent to ask the file-encryption agent before
storing or loading. Which strategy to use is just a matter of design, and is not handled
in this paper.

The solution with advanced managers in the kernel layer makes it possible to have
more than one manager for processes and memory. In this way an application can pro-
vide a special process manager that takes care of a subset of the processes to schedule
these in another way.The paging algorithms can in the same way differ depending on
the application. More forms of communication can be added in a similar way by add-
ing communication managers. Having several process or memory manager requires
that these are implemented to be aware of this situation, communicating with each
other to decide who should take care of what process.

It should be noted that I have taken the agent strategy to an extreme. The point I am
trying to make is that youcan perform all the tasks of an ordinary operating system
with a multi-agent system. This does not mean that it is the best solution to do so. It
might be better to have certain parts as a standard module-based operating system and
employ agent-based techniques in other places of the operating systems.

Assignment of functionality
The core modules, acting as an interface to hardware, are inherently harder to
exchange than the kernel agents outside of the core. This is not because they are so
deeply needed by the system, but rather because they involve machine specific code
and optimizations. Still, I have strived to keep them as small as possible, putting the
more algorithmic behaviour into agents in kernel-space. This approach enables func-
tionality to be replaced and added at runtime without disrupting the system. Behaviour
can also be altered without extensive knowledge about the target platform.

The operating system can very well work without the notion of users, and processes
should be secure from each other by default, unless they state otherwise by sharing
memory or communicating to untrusted agents. Accordingly, I do not introduce the
notion of users until at the service layer. Users should be seen as a convenience to
achieve security but the lower layers function without them. Nevertheless it helps to
have some user awareness like the owners of processes and files. The kernel agents
map a user ID as ownership and ask the user manager agent in the service layer for
information about the access rights when needed. If no user manager is present, the
kernel agents fall back to some default behaviour. The reasoning considering process
migration is similar. It is a desirable feature, but the operating system can manage very

32

well without it. Strictly speaking, the support given at the kernel level is with some
exceptions that of a single-user, single-computer system and the service layer extends
this to be a multi-user distributed system.

Naturally, this division can be discussed from the perspective of performance, but I
believe that the cost for context switches and IPC communication is small enough to
be negligible, considering the vast improvements gained in flexibility and structure.
There is virtually an equal amount of data to be stored when performing an in-process
function call as when doing a context switch. The data to be loaded for the new pro-
cess is however larger, but still small enough not to make this a real problem. With
modern processors it is a matter of mere microseconds to conduct a context switch. As
for IPC, one can by using shared memory reduce this task to the same level as if you
were putting something on the heap before a function call.

Service layer
Something completely new that I have introduced is the service layer. I have not found
evidence of anything similar in the research papers and operating system descriptions
that I have read. The reason for this layer is that there are things that are part of the
operating system, but not needed for the actual kernel. These services should be
allowed to run in kernel mode if they need to, and they should be able to communicate
with the kernel in a leisurely fashion. In some cases the kernel agents are even aware
of the existence of services in the service layer to for example authenticate requests
from users with the user manager.

In traditional operating systems there is a very strict division. Either you are in the ker-
nel, or you are outside it running in user mode and forced to rely on the functionality
of the kernel. I believe that by adding a service layer one makes this border more flex-
ible since you can have non-essential functionality running in kernel mode and the
kernel agents can also rely on the presence of the service.

The chicken and the egg problem
Removing the file system from the bootloader causes an unwanted problem; how to
load the file system manager from a non-existent file system. Before you can load the
file system, you also need to load the I/O manager and the disk device driver. I have no
obvious solution to this problem. To simply move the file system manager into the
core inflicts the flexibility goals since this means that the I/O manager and device
driver also would need to be put into the core.

In traditional operating systems this is not so much of a problem since there you know
what file system you are using and can support at least read-operations in the boot-
loader, but with the flexible model used in ABOS you have no way of knowing how
the files are stored and can consequently not know how to load them.

One could make a trade-off like the one with process and memory management, hav-
ing a basic I/O manager and file system manager in the core and an advanced manager
outside, but this would still, in my view, make the core system too large and too much
a central component in the system.

Another solution would be to have a separate file system for the boot loader, loading
the core system and the file systems manager using some default disk access device
driver and then, when the system has started both file systems manager and I/O man-
ager together with disk device drivers, discard these initial device drivers and loader
systems. The real file system manager could then mount this initial boot file system to
a suitable place in its directory tree, providing access to it for changes. This solution

33

may be the easiest to work with, but I believe that having a special file format for the
boot disk is not desirable. It forces the file system manager to keep track of more than
one type of file system, making it larger than what should be needed.

The best solution would be to have a bootloader that contains a dummy device driver
and also at least a subset of the file systems manager so that files can be read and fed
to the memory manager or wherever they are supposed to go. I believe that the solu-
tion with a separate file system is, unfortunately, the best way to solve the boot proce-
dure, but this file system should be managed by a separate agent that works like any
other file directory agent with the exception that it manages the entire boot disk direc-
tory tree.

4.8 Achieved goals
The flexibility goal has been achieved with theABOS kernel described above. Replac-
ing a kernel agent is simply a question of starting the new service parallel to the old
one, and then gradually take over the functions from it, by querying about it’s status.
The final cut is done by moving the communications channels to the new agent. Add-
ing functionality is even easier, since it merely involves starting up a new agent.

Having extensive support for communication and network communication in the ker-
nel to rely on should increase productivity when developing distributed applications.
If these services also define a flexible communication protocol like KQML [30] that
can be used as an all-purpose communication language, it should at least be easier to
program in a distributed fashion. Supporting process migration and including location
independence in the communications protocol facilitates such programming even fur-
ther.

Security should always be a goal when designing systems like this. The goals regard-
ing security involves fault-tolerance and user privacy. Fault-tolerance and such are
handled by the autonomous qualities of the various subsystems but is ultimately con-
trolled by their respective implementation. Security for malignant users is achieved by
adding security agents in the service layer. The communications manager can call an
encryption agent in the service layer before sending messages over network, as can the
file systems manager if file encryption should be enabled. Agents knowing that their
services are of a delicate nature can require authentication from the service layer
before executing requests.

Performance, which is also always expected from operating systems, is something that
I have not taken into consideration when designing the system. A quick glance at the
design shows that the number of context switches will increase significantly compared
to an ordinary system, as will interprocess communication. The division of the operat-
ing system kernel into several layers increases the possibilities for smart scheduling
and varying time quanta depending on in which layer the process can be found. Run-
ning kernel modules as separate processes means that parts of the operating system
can be swapped out at times, decreasing memory demands. If the scheduling algo-
rithms are similar to UNIX, processes that have been idle a long time will be swapped
out and removed from the primary run queue [7], implying that the entire kernel need
not be in the primary run queue.

34

5. Examples
The previous section presented the design of ABOS, an agent-based operating system, showing the
core and kernel layout. To further test the design, I will in this chapter take a few tasks and examine
further, making a more thorough design and discussion of these.

5.1 Introduction
In the previous section I made a rough design of ABOS. I outlined the different layers
and gave examples of tasks that resides in the different layers. I showed that the func-
tions provided by a traditional operating system can be handled by agents running as
separate processes. I also introduced the notion of a service layer that can hide things
like process distribution and enable process migration, among other things.

As mentioned earlier, there is not much one can do about process management and
memory management since these are ultimately controlled by the hardware. What dif-
fers between operating systems are the actual scheduling algorithms and paging algo-
rithms used. The same goes in all that is essential for the device drivers. They should
act as a mere abstraction to the varying hardware devices, not differing much in ABOS
from what is common practice.

Communication management can be done in many ways but I assume a simple model
that for the programmer looks like streams or pipes on which data is sent using a pro-
tocol like KQML. Naming services and network routing is done by a separate agent,
the advanced communication manager.

This brings us to the parts that can differ widely from current praxis. I have stated ear-
lier that the area of file systems can be greatly improved upon compared to the de facto
standard that is used today. I will examine this further by designing an agent-based file
system.

Resource allocation, for example to print a document, is often requested by the user.
Naturally the user have certain preferences regarding where he wants his document to
be printed, the minimum quality acceptable, and a number of other details. In a tradi-
tional operating system, it is up to the user to decide exactly where he want to have his
document printed, forcing him to know whether the printer is working, has paper, its
printing resolution, and where it is located. This goes for most other network devices
as well, even if the printer example is very significative. Users being as they are will
probably find a favorite machine/device and always use this regardless of its current
load, which will create an unbalanced resource usage. If you instead assign a poten-
tially mobile agent with the resource request or job to be performed this agent can find
the most suitable resource for performing the request, optionally moving to a host
closer to the device for the more communication-intense bits. This is the second task
that I will examine further and create a design for.

As I discussed in the section about operating system tasks, synchronization, and in
particular time synchronization, is very hard to achieve. Since you have no way of
measuring the time a packet is en route on the network, you have no exact way of syn-
chronizing clocks. I will investigate whether mobile agents can perform this task bet-
ter. As for other synchronizations like ordering of events there exists several working
theories so I will not go deeper into these areas.

These three topics (file systems, resource allocations, and synchronization) will be
examined in further detail below. A design is presented that relies on the agent operat-
ing system described in the previous section, and this design is evaluated.

35

5.2 Agent File system
Over the past 20 years, not much has happened with thefile systems we use. The same
conceptual notions of files and folders are still used. Files are dead objects, a dumping
place for applications to ensure persistence. Directories were added to be able to group
logically connected files and handle them as a single entity. In recent years an ability
to encrypt files has been added[51]. This was done because users requested a security
level not supported by the applications in use.

Networkedfile systems are commonly added as an afterthought, working on top of the
traditionalfile system. An explicit command is needed to distribute a certain directory
tree, causing troubles when one is working from another machine. This could be
viewed as an advantage when it comes to security, but security is handled with access
rights for the individual files, so this safety effort can be considered redundant.

Caching is in most systems rudimentary at best. There is always a problem to ensure
that the file read is the most recent one, and that no cached versions exist somewhere
in the network. One common way to solve this is to have write-through caches, which
decreases performance but ensures that all data is directly stored to disk. If the net-
work should go down for some reason you cannot save any files since the remote disk
and the networkfile server is no longer accessible.

Active Documents
Fredriksson has recognized the fact that documents are passive objects[43]. He writes
that you have to rely on external software like word processors and database systems
for the documents to get any behaviour. The attempts at making documents more
active, like compound documents [26] and OLE [26] only go so far. The autonomous
behaviour one can achieve in compound documents is a patch solution, and cannot be
modified to fit ones own needs. OLE is primarily concerned with visualization and
linking of data between a set of documents. The documents are still inanimate and rely
on the word processor to support the OLE or compound document framework.Fre-
driksson also outlines a solution to this application dependence, namely by embedding
each document in an agent. This agent can have arbitrary behaviour, sending updates
to concerned parties or simply update itself according to some rule.

I claim thatFredriksson’s theories are just as valid on files at large, not only docu-
ments, and that by making each file an agent we can gain many benefits. Things like
file dependencies, for example between source code files and their compiled equiva-
lence, can be managed by the files themselves, thus removing the need for a specific
‘make’-program. Caching over the network can also be handled in a smart way by
actually moving the file to the computer where it is used most,storing an image on the
server when the computer and network load permits, or when the server requests the
file for backup.

Solution
Thefile system manager resides in kernel mode. It defines standard file operations like
open, read, write, and close. In addition, it also defines interfaces for setting up associ-
ation tables for newly created files, to make sure that files of a certain type gets an
agent of corresponding type wrapped around the data. A word document should for
example get a word-document agent by default. File types that do not have an agent
associated with them are provided with a default agent from thefile system manager.
This default agent implements the traditional operations and provide basic protection
mechanisms.

36

A request for reading or writing to a file is forwarded to the specific file, and this file
may then decide whether to accept the request or not. Files can thus decide on their
own who should be allowed to operate on it, and also which programs that should be
allowed to access the file. The role of the file system manager is by this reduced to a
simple interface to load the file agents from the disk device driver. A default caching
mechanism can be added, but the files should have an option to manage their own
caching strategy. This will enable databases to have their own caching mechanisms,
whereas other files may decide that they are temporary enough never to ask to be writ-
ten to disk.

A distributed file system is accessed through a certain mount point, which is a separate
file agent. This mount point agent will act as a bridge to the remote system, showing
the contents of the remote directory as if it existed on the local disk. All file operations
come through the communications manager, so the file system manager need not
know whether it is a request from another computer or a local request that it is process-
ing. The actual directory agent that is accessed via the mount point agent decides
whether to accept or to refuse access from a certain host or mount point. The causes
for a refusal can be anything from not being on a trusted network to a temporary lock-
out to perform system management or backups.

Evaluation
The agent layout described above gives enormous flexibility, since each file may have
an individual behaviour. You also reduce the need for specific programs traditionally
needed to manage the files. Since the files carry their own behaviour they can easily
move to a new host within the network or even a completely different host system on
another network and still execute in their intended way.

The reason for the file system manager to implement the read and write operations is
that you do not know whether the file system is agent-based or a standard file system.
The manager should also have a possibility to load the file agent into memory if it is
not already loaded. Furthermore, the communication manager needs to set up a com-
munications channel to the object if this has been closed down.

Having each file handling their own security and behaviour, and also the decision
rights on who should be allowed to do what, gives an extensible security model. The
file agent will not allow the file to be transported to an insecure host, nor will it give
data to an unauthorized client. The file agent can also choose to show different views
of the file to different clients in accordance to their specific security status. The files
can also decide for themselves whether to encrypt the data or not. In the overview of
ABOS I stated that the file system manager could request this from an encryption
agent in the service layer. Letting the files manage this by themselves removes the
need for the file system agent to know specifics about every file. Different encryption
algorithms can be used for different files, improving performance on files with low
demands on encryption compared to files with high demands.

By letting each file agent manage its own caching mechanisms, file performance can
to some extent be tuned for the individual systems. The main disadvantage regarding
performance is that for each file request where the file agent is not already active, a
new process will have to be created and the request forwarded via IPC. Removing
some of the autonomicity of the files, reducing them to mere threads within the file
system manager, can reduce this bottleneck. To achieve better fault tolerance, one can
have a set of file-agent nurseries that each takes care of a number of agent threads.
These nursery agents can quickly optimize their numbers with regards to the average

37

number of file requests so that there are no more nursery agents than are needed at any
given time.

The mount point agent provides possibilities for redundant systems, letting the agent
determine whichfile system to provide access to from a set of choices. If one server is
down, the agent points to the next one. It can also dynamically determine the fastest of
a set of servers, and let the request go to this one. If the mountedfile system is not just
a read-onlyfile system but is updated as well, the servers should of course work as a
cluster, cooperating to store the data in a fault-tolerant way and update servers that
have been down with the changes made during their absence. The mount point agent
can also merge more than one directory to a single mount point, which might be useful
if you need to install something that is larger than the disks you have available. If you
in the future let each file creation request in this directory tree use the full path, the
mount point agent can dynamically put the files on the least used disk, or work in
accordance to the file’s own preferences on storage space. A database log file agent
may wish to have a disk with lots of space to grow in, but the actual database storage
space knows its exact size on creation and is not expected to grow uncontrollably
which means that it can be placed on the disk with the tightest fit.

There is a data storage overhead involved for each file, since its state and perhaps
binary executable should be stored together with the actual data. Doing a quick check
on all my java bytecode files gives that a standard class-file is approximately 5 kB in
size. Assuming that a file agent requires several classes, the overhead might be as
large as 50 kB. It should be noted that these figures may not be significative at all, they
are just based on estimations from my side. The actualstate of a file is however just a
matter of a few bytes, so one can avoid this overhead by storing the binarycode for the
agentas a separate file, letting thefile system manager launch this binary when a file
is requested. This would mean that an agent is needed that can ensure that the required
binaries are present at the future host if a file wishes to migrate. This is best done by
the process migration agent. After all, a migrating file agent is no different than any
other migrating agent, and the mechanisms for migrating are still the same. References
needs to be updated and forwarders left so that it can be found in the new location.

Naturally there is a risk that the users get overloaded with extra parameters to keep in
mind when creating a new file. It is not my intention to create more overhead. A file
agent is automatically selected and created with respect to the file type similar to how
files are displayed with a specific icon in Windows NT. The users can write file agents
of their own, but it is more the task of the software suppliers to provide agents for the
different file types.

5.3 Resource Allocation
Basically, one can reduce the problem of resource allocation to ‘finding the right
resource for the right price’. This may involve a number of parameters like the user’s
preferences, or a company policy of which resources should preferably be used
because they are cheaper, or a wish to use the device closest to the target. The
resources can be everything from a printer to a fax-machine or simply a certain hard
disk or sound card. This multitude makes it hard to create a general resource allocation
policy. In the case of a fax machine the one closest to the recipient should be used, and
in the case of a printer the one closest to the sender should be used. In other cases the
choice is easier, like in the case of the sound card where you only have the choice to
use a local card or none at all.

A common way to solve resource allocation is simply to have different programs for
all different resources, forcing the user to keep track of the various commands for the

38

resources. The user thus have to know that an audio device is found in ‘/dev/audio’,
but the printer should only be accessed via the ‘lp’ command (Examples are taken
from UNIX, System V). The user also needs to know where the device is situated,
since this affects the cost of the operation. Clearly, this is not a desirable situation
since it requires both the user and facilitating programs to keep track of the different
allocation schemes, commands and locations of devices. It would be preferable if the
system provided a common interface language for all devices, and a common interface
for allocating the device. Instead of having this plethora of different programs and
access ways, it would be convenient to have a single point to which all resource allo-
cation requests goes, a resource manager agent. This agent can in turn create any num-
ber of allocation agents that can negotiate the specific allocation by communicating
with the device drivers.

A resource allocation can be preceded by much communication, trying to decide
which device is the most suitable to allocate, how to allocate it, and for how long it
should be occupied. If the device or its device driver is situated on a remote machine,
perhaps with a slow connection, this communication may take a while. In such cases
the allocation agent can benefit from transferring itself to some place closer to the
device driver so it does not have to communicate over these bottleneck networks.

Solution
In the service layer we have a resource manager, from which you request what device
to use. The resource manager agent creates an allocation agent for the desired type of
device. This device allocation agent knows the specifics of the resource it is supposed
to allocate, and can thus initiate a dialogue with the user or calling software requesting
values for the parameters needed to set up the device. By hooking a policy agent to the
resource manager the allocation agent can also acquire guidelines of how the company
views the allocation. Another policy agent provides the allocation agent with the
user’s preferences.

In a distributed environment where the devices and resources may be spread over the
network the resource allocation agent gathers the information needed from policy
agents and interaction with the calling party and sends a lackey with the allocation cri-
teria to the driver’s host with the power to negotiate a deal. After a deal is struck the
lackey returns to the allocation agent with this deal so that the allocation agent and the
calling party can proceed.

As with file agents the idea of a nursery can be utilized, supposing that there are many
allocation requests. The allocation agents will in such cases not exit when the alloca-
tion is done, but instead stay on to take up a new job. The allocation agents can also
utilize encryption agents and other security policies according to the security model
for the device in question. The device driver agent willconsequently have certain
access levels that it checks each request against. It can also monitor the number and
size of requests from a specific user and perhaps deny access when the user has
exceeded his quota. It can also contact a bailiff agent to make a transfer of capital for
the service performed.

The device allocation agent can also monitor the job as it is being processed and return
any error messages to the user. If you for example print a document on the company
printer from your home you will want to know whether you can expect it to be lying at
the printer when you arrive thefollowing morning. The agent can monitor the progress
of the print job, notifying you if a paper jams. Furthermore, the agent could find some-
one that is present in the building and ask of him to fix the printer before giving up and
notifying you of the failure. Sticking to the printer example, if you have a very large

39

document to print and the company has an array of printers to take care of print jobs
during peak hours, the agent can split the job and print it in parallel on all or some of
the available printers if you launch the print job during the idle hours.

All of the above suggestions are hypothetical ideas of what a device allocation agent
can do. This is naturally depending on the implementation of the agent. I am just hint-
ing at ideas of usage that distinguishes themselves from an ordinary inflexible and
static allocation scheme.

Evaluation
By embedding each resource request in an agent you achieve device independence
since you leave it to the agent to find out the specific parameters of a certain device by
interacting with both the device and the user. A parallel to UNIX would be if you had
a single command, ‘allocate’, to allocate a device and had to answer a set of questions
to setup everything.

Usage of agents is highly suitable for batch jobs since you can provide the allocation
agent with the tasks to perform as well and not only under which parameters it should
work. For interactive resources, using agents to allocate the resource may result in
unnecessary overhead. On the other hand many tasks can be batched even if they nor-
mally are not. In fact, anything that does not require inputand output in one operation,
where the output is dependent on the input, can be batched. Even tasks with both input
and output can be batched, but this requires more intelligence from the agent perform-
ing the job. In the case of an interactive device, the resource allocation agent can also
provide an advantage by letting the agent watch the device until it becomes available,
signalling to the appropriate program that the resource is allocated and available for
interaction. The user or program will hence not need to manually retry if the device is
allocated at the time of the initial request.

The mobility of the device allocation agent ensures that you can allocate any resource
from anywhere in the network and the device need not even know that the allocation is
performed by someone from another host. For security reasons it might be advisable
for the device agentto do some check anyway, to see whether the request comes from
a trusted host, allocation agent, and user. This could also be done if the agent used the
advanced communications manager and the network to communicate the request, but
this way credentials could easier be faked and could also result in much network traf-
fic over a possibly slow network connection.

5.4 Synchronization
In many situations, for example in database applications, the order in which messages
arrive is important. In a distributed environment it is also important in which order
they are sent since part of the calculations may have been done on another machine
and messages are sent to integrate the results. The traditional way to solve this is to use
Lamport’s algorithm [7] in which messages are timestamped according to a logical
clock, and where this clock is updated according to the messages received. This is a
working solution and I see no reason to modify this.

There is also the question of time synchronization, which is asomewhat different
problem than event synchronization. Time synchronization is in many cases of grave
importance. A traditional ‘make’ program, for example, is extremely dependent on
that the clock in thefile server is synchronized with the clock in the workstation. If the
clocks are not synchronized the ‘make’ program will not work, recompiling more than
is needed or perhaps nothing at all even if there are updated files.

40

As described in thechapter about operating system tasks, the problem with time syn-
chronization is that there is no guaranteed time in which a network packet can be
delivered. This time is dependent on many factors like network load and the load of
the sending and receiving machines. To remove at least the network factor, global time
should preferably be broadcasted under the protecting umbrella of a jam-signal. How-
ever, this would slow down the rest of the network, if it is at all possible. Using the
jam-signal for anything other than a network collision would also be viewed as highly
unorthodox, and it would be better to introduce an entirely new signal to use for broad-
casting the time.

Solution
Even if the network was quiet during the time signal, so that a certain delivery time
could be guaranteed, there is still the possibility that a computer is so loaded with
work that it cannot process the time synchronization at once. There are two solutions
to this. The most obvious solution is to let the network interface manage time synchro-
nization messages, noting them with the local time. The network interface commonly
have a very high priority since it works with interrupts, so this local timestamp can be
considered accurate enough. Since you now have both the desired time and the local
time in the message it is an easy task to calculate the actual time at a later stage when
the machine finds time to do so. This solution relies on that the network device have a
high priority, and that it works on an interrupt-driven basis. Supposing that it is not
interrupt-based or that we do not know whether it is, we cannot assume that the local
timestamp will be the correct one. In such cases we need another strategy for synchro-
nizing time. Fortunately time synchronizations need typically not be performed very
often and can furthermore be scheduled to be executed during idle times like the night
shift. Using this assumption we can halt the entire network for the duration of the time
synchronization according to the solution below.

Once again I propose the use of a lackey agent, sent out by the machine responsible for
the time synchronization. This lackey can be sent at any time and it is the agent’s task
to agree with the machines which time would be suitable for a halt. This time may be
significantly different between different machines if their respective clocks are very
much off the actual time, but should still be relatively close together in their distribu-
tion around the real world time that the agent aims at for the synchronization event.
Once the time of synchronization has been agreed upon it is the job of the lackey to
make sure that all processes are suspended from the agreed time and forward, being
resumed either by a time-out or by a completion of the time synchronization. As soon
as the lackey has achieved total idleness, it sends a message to the time server stating
this. When it is safe for the time server to assume that all machines have ceased all
other activity it broadcasts the time on a by now silent network. Since nothing else is
running on the receiving machines they can process the time message at once, adjust-
ing their internal clock accordingly. The machines can then resume their previous
activities and the time lackey terminates. On such a silent network with idle machines,
it is also very easy to find out the propagation time to each machine by letting the
timeserver send a unicast message to each of the machines, which will in turn reply
immediately. This can be done once when a new machine is added or on command
from the system administrator and need not be done every time a synchronization is
conducted. Knowing this propagation time ensures even better accuracy in the time
adjustment if you take the delay into calculation when adjusting the clock.

Evaluation
The main and most obvious disadvantage with this solution is that the network and the
machines needs to be idle for an arbitrary period of time. This time may vary on differ-

41

ent machines, depending on the state of their internal clock. A machine that falls
asleep early has to wait for the slowest machine to achieve stillness. The algorithm
thus have a tendency to penalize some machines more than others. On the other hand,
the machines with the least load will most likely be the ones succeeding to fall asleep
first which will minimize the effects of this penalty.

There is, of course, also the question of whether onecan suspend all activities on a
network. In effect, the network needs to be stand-alone and not connected to any other
network like the internet to eliminate the risk that an external message enters the net-
work looking for a web-server or something similar. The router can of course play
along and block all external messages for the duration of the time synchronization, but
this would require that the router is intelligent enough to support such a policy.

What, then, do I gain by using this model? I gain the accuracy of a VVW-signal,
assuming that the network can be silenced. I also get a basis for a distributed time
management, since there is nothing saying that there needs to be a central time server.
Any machine can initiate a time synchronization, so I can have a cluster of machines
that decides which of them should get the time from the nearest atomic clock and dis-
tribute it to the rest of the network. I still have the benefits of a ‘push’-solution, mean-
ing that the server broadcasts the time instead of having each client asking the server.
Furthermore I get an informal guarantee that all machines have received and set their
clocks according to some timestamp, since they should have been silenced by the
lackey and the lackey should also have sent a message to the time synchronizer saying
that it is ready to receive. As soon as the synchronization is complete, the lackeys can
start sending acknowledgments to the server as well, thus giving a more formalproof
of that the synchronization succeeded.

There is, of course, no real need for the network to be silent or the machines to be idle
when performing the time synchronization unless you want an extremely accurate
time. If a moderate time synchronization is enough it might be sufficient to just silence
the network, or perhaps to suspend all processes. It might even be enough to do noth-
ing at all and trust that the network is fairly stable and the network agent has high
enough priority for the synchronization to achieve the accuracy you wish.

5.5 Summary
The examples above certainly do not constitute an entire operating system. They are
simply tasks that I have found more interesting and more suitable for applying an
agent based approach to than others. Process management, memory management, and
I/O management would make the operating system complete, but these parts are not
that different from other operating systems so there is no point in explaining and
designing these further. The presentation of these in the previous chapter should give
enough information on how these differ from traditional approaches.

The area in which you gain the most benefits is, in my view, with the file agents.
These provide a vast advantage in flexibility and understandability compared to a stan-
dardfile system. To let the files be able to modify their own state gives a very clear
conceptual notion of how the system works. It is no longer a program that modifies the
file, it is the file that modify its own state. In many cases the need for an external soft-
ware can be removed altogether by letting the file take care of all of the work itself.

In the other two examples, resource allocation and time synchronization, the benefits
are not as clearly visible. Resource allocation can be done with the same possibility to
introduce policies even if it is not done by agents. In this case the main contribution
with my solution is that I identify these programs as being agents,I suggest that the

42

allocation agent can be mobile, andI alsosuggest that the agent can supervise the job
in a more involved way than current allocation strategies. As for time synchronization,
this is today done with daemons that in effect are agents which is why I developed a
more complex solution using mobile agents. The time synchronization example is a
good example in many ways, showing a non-polled version of time synchronization
and also showing how to eliminate many sources of errors, but it is also an example of
making a relatively simple task too complicated.

One problem that all of the above solutions may suffer from is lack of performance.
Having so many autonomous agents causes a large number of extra threads or pro-
cesses, which in turn gives more context switches than in an ordinary operating sys-
tem. This is naturally a majorAchilles’ heel. Even if computers are becoming faster
and faster the operating system should still not be time-consuming enough to be
noticed. In the case offile system agents, the gains in flexibility can in many ways
defend the many context switches but with other tasks, like synchronization, it is prob-
ably overkill to use agents.

Still, the three examples presented above are areas where one can gain at least some
benefits from agents. Another example springs to mind where agents would not be
very suitable, namely network packages.Embedding every network package with an
agent would give each message the power to find the fastest or the cheapest way to its
destination, and the sender would not have to worry about the package encountering
different policies somewhere else since the policies are embedded in the network
package agent. Whereas this solution gives much power and control to the packages,
the overhead cost in transferring the agent binary and start up on each routing host on
the way is simply too expensive. This is just one example where agents are absolutely
not recommendable. As always there is a trade-off between ‘cool techniques’ and
practical solutions. It is just a question of using agents where one can benefit from
them, but one should not use agents in places where they clearly are unsuitable.

43

6. Evaluation
In the previous chapters I have described agents and operating system tasks. I have also designed an
operating system consisting of agents and furthermore given examples of more detailed tasks in this
agent-based operating system. Remaining is to evaluate the operating system designed against the
criteria set out for a modern operating system in Chapter 3. This chapter will evaluate the operating
system designed in Chapter 4 and Chapter 5 against these criteria. I will verify that the tasks
required are fulfilled and hold a general discussion about the agent operating system solution.

6.1 Introduction
As I described in Chapter 3, an operating system should minimally manage processes,
memory, I/O, and file systems. I also claimed that you need communication support
and security primitives in the operating system to make it complete and able to meet
the demands on a modern operating system. Going through these different areas I will
investigate whether the agent operating system described in the previous chapters
meets these requirements.

6.2 Process management
Naturally ABOS manages processes, otherwise it would not be an operating system.
The core system takes care of the creation of processes like creating process control
blocks and such. It also manages the various run-queues. By putting all other logic into
stand-alone processes that run in the kernel layer the agent operating system ensures
that scheduling algorithms can be added and customized while the operating system is
running. Since you can have more than one advanced process manager, you can also
have more than one way to create a process. The easiest is to ask a process creation of
your own manager, but you can also ask another manager for the creation. A process
can also move to another process manager if it needs to change scheduling algorithm
while running. In this way a process is not limited to a certain scheduling policy dur-
ing its entire lifetime. As the application proceeds into different stages it can change
policy by transferring to another process manager.

Having the process managers as separate processes creates some interesting dilemmas.
The most obvious is how the process managers should be selected to run without hav-
ing any scheduling policies for themselves. The answer is that at least one process
manager is always present in the run-queue. This process manager should act as a
nanny to the other process managers and manage their process control blocks when
they are unable to do so themselves. Another dilemma iswhen a process manager
should be run. According to the standard scheduling model it should wait for its turn
like any other process, but for performance reasons it might be better if the process
manager is run as soon as someone sends requests to it. This question is more related
to communication management, and I will discuss the problem further in this section.

The division between what the core process manager and what the advanced managers
should do is not clear in the current design. On one hand I claim that all scheduling
policies should be handled by the advanced managers, and on the other hand I argue
that the core process manager should choose new processes to run. According to the
design described, the core process manager does not even use preemption, but instead
waits for the processes to yield. This results in a situation where one process can hold
the CPU forever, never yielding to let the advanced process managers run. To solve
this, we need to add preemption to the core process manager. Any process should be
able to block for a specified time, and when this time has expired the core process
manager should be able to preempt the running process to run the blocked thread. To

44

avoid abuse, we can further limit this by only letting kernel agents be guaranteed exe-
cution within real-time boundaries.

So far, the process management does not supply support for multiple threads within a
process. Threads share the same memory space, but should otherwise be treated as
separate processes. Many approaches to developing agents, like that suggested when
using April [31], use a method where every thread is a stand-alone process. I believe
that an agent should not consist of more than one thread, or it will be too complex. If
an agent needs more than one thread, it can equally well fork off a child-agent to solve
the extra task. However, it is an easy task to write a new process manager that supports
multi-threading, should need arise. One can also solve many tasks with the use of
shared memory between full processes.

As with any preemptive multi-tasking operating system, ABOS has difficulties to
meet any hard real-time boundaries. A process does not know when or for how long it
will be run, so you can not guarantee any execution times. However, by communicat-
ing with the process manager an agent can set up conditions that it for example “needs
to have exclusive access to a CPU for xx clock cycles starting yy cycles from now”.
The process manager can then make sure that all other activity is suspended or re-
scheduled to another CPU before this time. It can furthermore influence the timer not
to generate any interrupts to this CPU during the duration of the exclusive access. This
means that a process need not have a fixed priority. The agent can negotiate with the
process manager to set an adequate priority at any given time. This is very different
compared to traditional operating systems where the user commonly has to set the pri-
ority manually, and is in some cases unable to change the priority once the program
has been launched.

There are no troubles involved in supporting multiple CPUs. The advanced memory
managers might need to adapt their caching policies, but apart from this no extra mod-
ifications are needed. The core will need to be aware of the other CPUs and be able to
move a process to a new processor, which implies that also the core process manager
needs to be replaced with a multi-processor version. The advanced process managers
in the kernel can be aware of the extra CPUs, but it is not necessary. The core process
manager can keep the single run-queue and act as if it only had one processor even if
the system actually has more. Multiple processors might however affect scheduling
decisions, so the advanced managers will probably benefit from being aware of the
extra processors.

6.3 Memory Management
As with process management, at least some control is needed in the core to be able to
run the rest of the system. The core module only manages the assignment of virtual
memory pages to physical memory. The core can decide to move pages in memory
and copy or move the contents of a page, but eviction mechanisms and communication
with the disk device for swapping and paging is handled by the advanced memory
manager in the kernel layer. Again, as with process management, you can have more
than one advanced memory manager, each having different functions. One manager
can handle local memory and another shared memory while a third participates in the
management of a distributed, network-wide pool of memory.

Bereaving the core memory manager of the page eviction algorithms causes overhead
when a page fault occurs. In such cases the core memory manager needs to send a
message to a memory manager informing of the problem, after which the advanced
memory manager should communicate to the disk device manager and acquire the
requested page and then send this back to the core memory manager. Optionally

45

another page needs to be evicted, meaning communication to the core manager to first
get available pages together with all the extra info needed about the pages and then
more communication to receive the selected page and send this to the disk device
driver. Supposing that it is one of the programs in this chain that had the original page-
fault, you will enter an infinite loop trying to load the memory page, which will cause
a page fault, and so on. This is a problem that does not occur in a traditional operating
system since the entire kernel is always loaded into memory. Fortunately, there is a
solution to this. Since it is the job of the memory manager to keep track of which
memory pages that should be evicted to the swap disk, it can also choose not to evict
pages that are part of this essential chain. This forces the memory manager to be aware
of what kernel agents are involved when loading and storing a page to disk.

It is not at all clear how shared memory should work. A process who wishes to share a
memory area should request this from the advanced memory manager. The manager
finds the appropriate pages and marks them as shared. When another process wishes to
share the pages he requests this from the advanced memory manager. As a reply he
gets the size of the shared area, after which he sends another request to the manager
with a memory address to map the pages onto. Interesting is that a shared memory area
can have a name of arbitrary complexity. I prefer a text string describing the purpose
of the memory, but a unique number is also possible.

The fact that the memory manager is an agent just as the processes are gives opportu-
nities to communicate and negotiate with the memory manager. By knowing what an
application is planning to do, the memory manager can customize the page swapping
algorithms to best suit the task at hand and thus increase performance. This is of
course assuming that the application informs the memory manager of its intentions
and negotiate to get a suitable paging algorithm. An application should be able to store
a certain paging scheme under a certain name, so that it only needs to send a message
to the memory manager stating that “in the next xx clock cycles I intend to do the
operation nn” when it wishes to use a certain algorithm. The memory manager can
then adjust the paging algorithms accordingly, trying to join the demands of this algo-
rithm with all the paging schemes that other applications are using.

6.4 I/O Management
I/O management is the question of making devices visible for communication in a uni-
form way. The different applications should not need to worry about the specifics of a
certain device, but rather concentrate on what they wish to do with the device. ABOS
is similar to ordinary operating systems in that each device is handled by a certain
module, but unlike traditional approaches all communication with the device is done
through the same communication channels as if they were any other process. Whereas
this approach enables a transparent allocation and utilization policy, it decreases per-
formance. Many applications like games require direct and immediate response from
devices, for example the audio device, and if each new sound effect should be sent and
treated as a standard IPC message, this real-time aspect might not be achieved. On the
other hand, I have argued that IPC performance is improving, and that the use of IPC
instead of in-process calls is no longer any restriction to performance. The loss of per-
formance must, accordingly, be caused by something else. If you use an in-process
call, the execution is performed immediately after the call to the responsible method,
but with an IPC call, there is no guarantee that the receiving process is run immedi-
ately after the call. Indeed, if the call was sent asynchronously, it may not even be
desired to break the running process to start executing the receiving process. As with
process management, this problem will be discussed further in the section about com-
munication support.

46

Due to limitations in the hardware, the computer generally needs to be shut down
when installing new hardware devices. This makes the flexibility and extensibility of
ABOS somewhat malplaced. A feature perhaps more desired is that of dynamically
being able to replace device drivers with new or more specific versions. Supposing
that a system upon start-up detects a new device, it can start up a generic driver to
manage the device which can later be replaced by one from the hardware vendor with-
out having to restart the system again. The fact that the device drivers are agents
enables interesting solutions to distribute work load as well. If a task involves much
pre-processing before the interfacing to the actual device, the device driver agent can
spawn peers to help with this. The newly created agents will then communicate with
each other to gain exclusive access to the device once the processing has been done.

One of the main tasks of the operating system is to present the devices to the user in a
uniform and intuitive way. ABOS does not specify any particular way to categorize
the devices. It is the task of the I/O manager to keep track of the available devices, and
to start up appropriate device drivers when new hardware is detected. Once a device
driver is started, it will bind itself to a name in the communications manager. All
access to the device will henceforward be made through this communication channel.
In this way, a device is presented as any other agent or resource, and communication
to it is done in the same intuitive way. The I/O manager can furthermore act as a skill
server, tagging each device with its capabilities and usage statistics. To further enable
users to find and communicate with the devices, a special directory agent can be added
to the file system that presents the devices much like the ‘/dev’ directory in UNIX. If
the file system does not support agents a special file system manager can be installed
that presents the device drivers as block or character devices, again in the fashion of
UNIX.

6.5 File system Management
In the basic kernel design nothing is said about how the actual file system should be
managed. All that is said is that you have one or a number of file system managers that
each manage a certain type of file system. So does for example one manager handle
UNIX file systems while another handles NTFS file systems. This division of file sys-
tems into different agents enables an interesting feature, namely that one partition on a
hard disk can contain more than one file system. Suppose that a system has been run-
ning FAT and now wishes to change to NTFS, no files needs to be converted; you sim-
ply let both file systems coexist on the same disk. New files that are created will get
the NTFS structure, and old files will be read from FAT and perhaps converted as
well. In this example all files will eventually have been converted to NTFS, but the
agents can be set up to coexist so that no file system is favored.

Being able to extend and replace these low-level interfaces as the file system managers
are gives possibilities to extend the set of operations allowed on a file system. So can
for example a FAT file system be extended with the ‘defrag’ operation that would
move around blocks on the hard disk to enhance access times. All file systems can be
extended with a backup operation, and in some file systems one can force a garbage
collection. In traditional operating systems, distribution of a file system is done by a
certain part of the operating system, and not by the separate directories and files as in
the agent file system. This means that to, in ABOS, add file system access to a host
running a traditional operating system you would need to write either a separate SMB
mount point agent or a separate SMB file system manager.

The agent file system described in Chapter 5 brings enormous flexibility to add and
modify the default behaviour of the file system. As stated, many applications can be
removed altogether by replacing them with a special file agent. The common problem

47

with applications polling a certain directory for new files to process can be avoided by
writing a new directory agent that takes care of the file as soon as it is added. Such an
opening can work as an intuitive access point for other software that do not necessarily
know the interfaces of the program responsible for the directory agent.

An agent-based file system gives better robustness than ordinary distributed file sys-
tems, because files can be transferred to another host if need arises. If the server is shut
down for maintenance, the open documents can move themselves to the host where
they are edited and wait for the server to come on-line again. This means that the user
will not notice that the server is gone. The intelligent mount-point agent that switches
the mount to another file system on another host also guarantees that a server shut-
down and restart can occur virtually unnoticed by the users.

Every type of file does not benefit from the same caching techniques or even storage
techniques. The fact that every file in the agent file system is an autonomous agent
enables every file to be cached and stored in a way that suits the file best. A database
file must not be cached by the operating system, whereas a temporary file should
maybe not be stored at all. These are strategies that can be implemented with the agent
file system. As for storage, the database file may wish to be stored sequentially for fast
searches and a log-file may wish to be stored close to the centre of the hard disk to
minimize disk arm movement when storing the data. These preferences will be negoti-
ated with the file system managers to achieve an optimal situation.

The agent file system also enables a truly distributed file system by letting all hard
disks on the entire network participate in the global file system. This would mean that
all the disk space that today is left unused after installing the local operating system
can be utilized. It would, however, also mean that the global file system is dependent
on a multitude of disks to be fully operable all the time. It would only require someone
to trip over a wire to bring the entire network to a standstill. Accordingly, I do not
argue for the completely distributed solution, instead I recommend the use of one or
more central disks and file servers.

The problem that every file will grow to include the code for the agent as well has
been discussed previously. This is of course not good, but measures can be taken
against this by storing the agent code separately and merely store the state together
with the file. Having two or more physical files per logical file will cause overhead
and hence reduce performance. In fact, having to let every file request go through the
file agent to do some processing will also inflict on the performance. Fortunately, hard
disks are magnitudes slower than processors, so some extra milliseconds will probably
not be noticeable. Greater possibilities for smart caching and customized behaviors of
the files will hopefully also reduce the performance penalty, provided that the possi-
bilities are used.

Today, when many applications are object-oriented, it is sometimes convenient to be
able to store each object as a separate file. A particular example is the EPIDEMIC
compiler [53], where each node in the parse tree is represented as a separate object.
When you change the source code, the parse tree should update accordingly. For large
files it would be convenient if parts of the parse tree were dumped to disk to save
memory. With the agent file system this can be done. The compiler objects would still
be notified when there is a change even if they are currently lying dormant on the hard
disk, and this functionality need not even be implemented into the compiler.

48

6.6 Communication support
Because of the extremely modularized structure of ABOS, the demands on communi-
cation support are very high. First of all, the agents should be able to communicate
locally as smoothly as if they were parts of the same process. An IPC call should pref-
erably not be much slower than a traditional function call to make the ideas of an
agent-based operating system acceptable. The solution described is message based as
compared to the stream-based solutions that is common in traditional operating sys-
tems. The communication that goes through the core communication manager is how-
ever stream-based, but is not fitted for lengthy transmissions like those of a UNIX
socket or pipe. The communication channels are furthermore one-way pipes, forcing
replies to be sent as separate messages craving separate communication channels. This
solution makes it possible and even easy to use asynchronous message transfers.

I have already mentioned the scheduling problem that arises from communication. In
many cases like when trying to communicate with a process manager it is not accept-
able to wait for the recipient to run according to the preset scheduling algorithm. The
recipient should preferably be run immediately after the caller has sent the message or
when it has finished its time quantum. This can be done by letting the core communi-
cations manager talk to the core process manager and re-schedule the recipient to
some high-priority message-receive-queue, so that it is run immediately after the send-
ing process’ time quantum has run out. If the sender wants a synchronous message
transfer, it will most likely wait for a reply immediately after it has send the original
message, so this policy would guarantee response times not very different from a stan-
dard function call. The other agents that are not part of this particular exchange of
messages will however suffer from such a strategy. If two agents engage in a lengthy
discussion no other process will get a chance to run; they will starve.

To avoid such problems, the process managers will mark each process with a flag in
its process control block stating whether it is a fast-response, custom-response, or a
standard-response agent. A fast-response agent will reply immediately, and is re-
scheduled entirely by the core. A standard-response agent will not be re-scheduled in
any way, and a custom-response agent will cause a trigger from the core process man-
ager to the advanced process manager which can then place the agent into a queue of
arbitrary choice. Kernel agents are always fast-response agents, assuming that kernel
agents are more considerate than other agents and are not likely to engage themselves
in any lasting discussions.

Without having stated exactly how the communication should work, down to the level
of how the bytes are transferred to the recipient, it is very hard to say anything about
the performance. I believe that one can make primitives that fulfills the goal of not
costing more than a function call. Supposing this, it is hard to find anything negative
about the communication strategies. The advanced communication manager will take
care of all network messages, as well as being able to set up more than one channel to
a given agent. These extra channels are provided to give logical names to services, but
does in effect not provide more functionality than a single mailbox. Being able to dis-
tribute names over the network helps in creating distributed applications since the cli-
ents need not explicitly know the location of a service as long as it is on the same
network. If it is on another network, the domain server can take care of requests and
route them to the right host, whereas the clients only need to know what network the
service is available on.

To find a service, it is necessary to know the name of the communication port, which
makes it necessary to be able to query the advanced communications manager about
what names are available together with some description of the skills of the agent

49

responsible for a certain channel. This could also be handled by a separate skill server
agent, which will be referred to by the advanced communication manager when que-
ried about the tasks of some agent.

6.7 Synchronization
There are two different categories of synchronization in an operating system. The first
and most important is that of synchronizing messages so that they arrive or appear to
arrive in the same order as they were sent. If a distributed system should appear as if it
were a single system it is also important that all participating hosts share the same
time.

Whereas message synchronization and ordering is handled by the communications
manager in the kernel layer and by library functions within each process, time syn-
chronization is not part of the kernel functions. This is also visible in ABOS, where
time synchronization is done by agents in the service layer. The synchronization is ini-
tiated and performed on the command of a single machine so one can guarantee that
all machines actually gets synchronized. If one follows the algorithm fully, silencing
both the network and the machines before the synchronization, one is also guaranteed
a highly accurate synchronization compared to the traditional approaches.

I have already argued against the solution in Chapter 5, claiming that it is unnecessar-
ily complex and that the need for the participating machines to be idle during the
length of the synchronization procedure makes it waste valuable computation time.
One can also question the necessity for a mobile agent. The whole operation can
equally well be performed using simple messages. There are at least some advantages
in having the agent mobile, though; you do not need to start up any special software on
every client when you boot it up and you do not need a certain agent on each client
spending most of its time in an idle state, waiting for the synchronization message.
The mobile agent will instead transfer itself to each host and begin to execute when it
is time for the synchronization, and can disappear when the synchronization is done.

Unlike the traditional ostrich algorithm, ABOS can implement deadlock detection and
recovery. An agent can when it requests a resource learn who is holding the resource.
Communicating with this other agent, you can find out which other resources it is
holding and whether it is blocked waiting for another resource, and in such cases
which resource. By introducing the requesting and the holding agent to each other, the
holding agent can also store information as to what resources it indirectly blocks by
holding a certain resource. It can then decide to give up one of the resources, abort the
operation it is working on, or ask the requesting agent to give up one of its resources
that is directly or indirectly needed. I am thus attacking the circular wait condition by
way of the no preemption and the hold-and-wait conditions, assuming that it is safe to
hold a resource as long as no other process needs it, and that I am not indirectly wait-
ing for myself to release a resource. The detection algorithms can be implemented
both in the agents themselves, or in the resource allocation agent. Where to put the
intelligence is just a matter of taste. However, to make sure that the problem is not
ignored by application developers, it may be best to implement it in the resource allo-
cation agent.

6.8 Security
Security is not only the issue of protection against malignant users, it is also to protect
against and recover from faults in the operating system and system crashes. It is often
possible to distribute and replicate software over a set of machines to protect against
such system crashes. The trouble in distributed systems is commonly that instead of

50

having one single source of error, you end up depending on several machines to be
operable. The entire structure of ABOS is done to enable distribution. There are very
few central components that can break down and cause delays for the users. Some
agents, chiefly in the service layer, can be shared among a set of computers thus mak-
ing them centralized but they can also be implemented on each host, communicating
in a distributed manner. For the unavoidable central components like file servers there
are schemes allowing redundant servers and the clients change to backup servers
transparently for the user. The caching mechanism supported by the agent file systems
that files actually move to the host where they are used the most can cause loss of data
if the hard disk where the file currently resides should break down, but this loss can be
minimized by sending images of the file to the server at regular intervals.

I have earlier argued that mobility is often unnecessary, and that most tasks can be
handled by standard message-based communication over the network. To protect
against unauthorized entry, one can think that mobility is even more undesirable.
However, actually sending the code to execute on the receiving side brings some
advantages to the security situation. If you, as an agent, get a message it may be hard
to determine that this message originates from a trusted agent that is not up to some
mischief. If the code is transferred to your host you can let it pass through a filter much
like a virus check before starting to communicate with it. If the host from which the
agent originates is on the local network this search can be done on the sending side and
eliminate the need to transfer the agent code, but if the agent comes from another net-
work you have no way to trust it without actually checking the code.

Even with such scans, ABOS is in its current state very open for virus attacks because
of the flexibility that I have prized so much. Malevolent users can write their own ker-
nel agents and install them, replacing the real ones. Obviously some sort of security
check needs to be made to ensure that a certain user has the access rights necessary to
install something into the kernel. This security check can thus allow some users to
install kernel agents, whereas others may only run them. Other users again can be
allowed to install and/or run agents in the service layer, and some users may only be
allowed to run programs in the user layer. This gives a security model where practi-
cally everything of interest can be configured on a per-user-basis. Because files are
active entities, and because anyone should be allowed to write their own file agent, the
agent file system will be a major breeding ground for virus attacks. I fear that people
will use the opportunity for flexibility just as they have used the macro-feature in pro-
grams like Microsoft Word. What is even worse is that the files can migrate by them-
selves to new networks and hosts, and the user has no opportunity to select whether a
file should be allowed to run or not.

Because of the possibility to add more managers in the kernel that communicates with
the default ones, you achieve high fault-tolerance. If one process or memory manager
blocks or bugs on some operation, only the processes involved with this manager will
notice this, and all other applications will continue as usual.

6.9 Performance
Performance was not one of the goals when I designed ABOS. Nevertheless I have
tried to keep it in mind when designing, trying to avoid the most ineffective solutions.
In many cases, like the agent file system, having to execute code in situations that
today are done as a simple disk-to-memory operation will of course slow down the
overall performance of the system. It is my hope that by executing these extra bits of
code some smart behaviour can be implemented to negate this effect by speeding up
the perceived performance for the user.

51

Scheduling decisions will also cause some troubles with performance if one is not
careful. Operations that in traditional operating systems are performed as a function
call should be done in a similar way in ABOS by ensuring that the receiving agent is
executed immediately after the calling agent. However, care must be taken to avoid
starvation of the other processes when a lengthy discussion is being held. One way to
avoid this is to let the receiving agent share the same time quanta as the calling pro-
cess. In this way no extra time is allotted for communicating agents.

The amount of context switches can be a liability compared to a traditional operating
system. For every context switch CPU registers needs to be saved, memory references
switched, open files noted and stored, and so on. This takes some time, and doing this
often can result in reduced performance. A short survey yields that a common situa-
tion in a UNIX system is to have 40 to 80 processes in total, but in ABOS there can be
this many processes even before users have logged in and started any applications,
which should prove that there is an increase of context switches in an agent-based
operating system.

By installing a network process manager you can distribute work over the hosts in a
network. There is an overhead in finding a suitable host and perhaps transfer the code,
but for processes running a longer period of time this overhead can be worthwhile.
This is valid for agents without any user interface, but if the agent requires input from
the user, the demands on the network bandwidth increase. This can be solved by just
distributing computation-intensive tasks as separate agents to other machines. All
tasks that involves user interaction will remain on the local host. This means that the
agents themselves must decide whether they are suitable for load balancing, which is
in accordance to the rest of ABOS that encourages such local decisions.

It is possible to achieve real-time execution by negotiating with the process manager.
Having real-time execution means that ABOS can be used in embedded equipments,
and that hard real-time deadlines can be met while at the same time have a multi-task-
ing environment. On a single-processor machine, the system is of course not multi-
tasking while a process is running in real-time mode. This implies that real-time
behaviour should only be allowed for shorter periods of time to let other processes run
as well. When an agent is running in real-time mode all agents that it calls should be
promoted to real-time mode as well, provided that the call is synchronous. If an asyn-
chronous call is made this can cause some problems because the called agent has no
way of running on a single-processor system until the real-time process has finished
running.

The fact that the scheduling priorities can be customized to almost any extent and even
support real-time execution implies that the performance can be very much tuned for
the specific applications. By allowing the applications to themselves negotiate for a
change in priority also means that better performance can be achieved when needed.
To avoid abuse, there should be a cost involved in running a higher priority, so that no
process runs indefinitely at an unnecessarily high priority. The system is scalable to
any number of processors, provided that the core process manager is programmed in
such a way, which implies that performance can always be improved by installing
more processors. Whether the performance improvement is linear or not I will not try
to evaluate.

6.10 Other
In the design of ABOS there is no mention as to what decides whether an agent is a
kernel agent or a service agent or a standard user program. This is an implementation
decision, but could have severe impact on the total of the model. The agents can them-

52

selves decide whether they are kernel agents, or they can be assigned a place in the
system. If they are assigned a place, someone needs to supervise that they keep them-
selves to this layer and someone needs to maintain lists of what agents to start in a cer-
tain layer. If the agents decide themselves you do not need this supervisory function,
but you still need some check to ensure that the agents do not exceed their authorities.

An agent should be aware of its environment and should be able to decide whether it
wishes to reside in the kernel layer or the service layer, but this also implies that the
agent is aware of it being a part of the operating system which makes it more difficult
to incorporate agents from other vendors into the system unless they have been cus-
tomized to fit the agent operating system. There is also the question of abuse. If the
agent claims to be a kernel agent, someone must perform a check to ensure that the
user who launched the agent is authorized to start up kernel agents. You can obviously
not trust the judgement of the agent itself in such cases. Considering all these aspects,
I believe that it is desirable to have a certain agent that installs and supervises the other
agents.

In a multi-tasked operating system it is common to use an interrupt-based approach to
communicate with hardware. To have the entire operating system halt and wait for
some device I/O is naturally not possible. The interrupt signal, when it comes, should
be directed to the process that is interested in the signal. This process may not be the
one that is running when the signal comes so some mechanism is needed to halt the
currently executing process, make a note that an interrupt has arrived in the receiving
agents process control block, resume running the halted process and finally notify the
process that an interrupt has occurred when it is time to run it again. It may even be
needed to run the receiving process directly, allowing it to clear buffers before new
data arrives. Be that as it may, what is more important is that the core needs to recog-
nize interrupts and to perform some action when one arrives. The core can already
handle page fault interrupts and timer interrupts, but it must also be able to manage all
other interrupts. The best way to do this would be to extend the core with an extra
module that takes care of incoming interrupts and directs them to the appropriate core
module. The core process manager needs a table in each process’ PCB stating which
interrupts the process subscribes for and a memory address to call in the process’
memory space.

6.11 Summary
In the evaluation above, I have tried to impartially both criticize and praise the design
of ABOS. I have solved the problems encountered and have tried to come up with new
ideas of how to put the good things to use. In total this amounts to a better, more thor-
ough design of ABOS. I believe that the main structure is as robust as it can be, and
that many of the problems one will encounter during development has been covered.
What remains to be done is, of course, the tedious task of designing every core module
and kernel agent in detail, and to implement the system. This is however out of the
scope for this thesis, I believe that I have proven that agents can be used to construct
an operating system, and that I can gain many benefits in so doing.

I have gone through great trouble to really use the flexibility provided by ABOS. I
have created a situation where applications no longer need to adjust to a static operat-
ing system. Instead, ABOS adjusts to the applications by adding new file agents, pro-
cess managers and so on. This amounts to applications being able to execute on raw
hardware, but still having the possibility to coexist with other applications running
concurrently. In this sense I have kept the ideas from Aegis [6], but crafted the solu-
tion in a completely different way.

53

In my solution applications from different vendors can use the agents provided by
another vendor. The applications need not be aware of which vendor a certain agent
comes from. Unlike Aegis, where you can at best share operating system components
when developing, you can in ABOS share them at runtime as well. This means that
software from different vendors can be made to collaborate in ways that were not
known or expected when the applications were developed. The components can fur-
thermore be replaced and upgraded at runtime without the applications knowing or
even noticing that this is happening.

One of the main idea behind ABOS is openness. Nothing should be so hidden in the
kernel that clients cannot modify it. I believe that I have achieved this open system.
Applications can customize the behavior of the kernel down to the smallest compo-
nent. Interesting to notice is that such a customization is only noticeable for a subset of
the processes, those that wants to use the particular scheme. Other applications will
not be disturbed by these tunings, and can continue to work as normal.

54

7. Conclusions
This section concludes the work done in the previous chapters. A discussion is held regarding what
I have achieved, and where to go from here.

7.1 Summary
This thesis consists of several parts. A survey of how operating systems are built today
is followed by a description the major trends in operating system research, showing
that whereas the current operating systems are built as large monolithic kernels, there
are a number of interesting research operating systems. These research systems com-
monly focus on object orientation and modularization.

Following a description of agents and some of the concepts commonly connected to
agents, is an investigation of what has been done with agents in operating systems
already after which, in the realization that this area of research is still unexplored,
there is further motivation for the suitability of agents in operating system kernels.

In order to be able to design an operating system, it is vital to know what tasks an
operating system should be able to perform. Chapter 3 is spent identifying and dis-
cussing what tasks an operating system should perform, giving examples of common
situations and trying to find pitfalls.

The two chapters following are spent designing ABOS, an agent-based operating sys-
tem supporting the tasks identified earlier. The rough design in Chapter 4 is further
refined by designing some tasks in even more detail. Chapter 6 is spent evaluating the
design to ensure that the requirements has been met.

7.2 Conclusions
This thesis has achieved a confirmation that agents are indeed suitable for use in oper-
ating system kernels, and that you can in fact base the entire operating system on
agents that interact with each other. To use agents instead of traditional approaches
ensures that you get greater flexibility, as well as interesting opportunities to make a
distributed operating system.

The design of ABOS shows some interesting qualities which are until now, and to my
best knowledge, unheard of. The service layer is an example of such a feature. This
extra layer in the operating system does not provide any extra functionality in itself,
but is a very good way to categorize applications that are not quite kernel programs
and not quite user applications either. By having a special layer for such services you
can generate more detailed priority, access, and scheduling policies.

The agent-based file system described in Chapter 5 shows that there is still much work
to do regarding how we perceive file systems. For decades virtually no attempt has
been made, and certainly none has succeeded to add to or change the concept of files
and directories. I believe that the agent-based file system will introduce a change in
the vision of file systems, even if some aspects like security speaks against it. Agents
as files provides so much new in flexibility and usefulness that it is my firm belief that
the concept will be used even in commercial operating systems.

ABOS can also be used in real-time environments. There is a possibility to affect the
scheduling for a process in such a way that it can gain exclusive access to the CPU for
limited periods of time. Compared to other real-time systems, ABOS is much more
flexible in that it does not use static scheduling for a predefined number of threads.

55

Unlike the classical operating systems you do not have to change the priority of a pro-
cess manually, something which often renders the user incapable of lowering the pri-
ority again.

Furthermore, in ABOS a situation is created where the operating system adjusts to the
applications currently running. The traditional approach is otherwise to assume that
the operating system is static, and instead write the application to circumvent the lia-
bilities in the operating system. If you can modify the kernel, there is no way to mod-
ify it for a single application only. The changes you make is visible to all other
applications as well. In ABOS the situation is different. Here, you can modify the ker-
nel by adding new kernel agents and negotiate with the existing ones, and the changes
you thus make to the kernel is only visible to your application.

7.3 Future work
The design and evaluation of ABOS in the previous chapters is so far only a paper
product. The next step is of course to implement the core and at least some of the ker-
nel agents. This, however, is a much greater task than the scope of a master’s thesis.

After the core and kernel has been implemented, a further evaluation should be made
to verify that it works as a real product as well as a mind experiment. I would not be
surprised if many things need to be made differently, but I also believe that the basic
layout will remain, as will the flexibility.

56

References
1. Bershad, B.“The Increasing Irrelevance of IPC performance for Microkernel-Based Operating

Systems”, USENIX Microkernels Workshop, 1992.

2. Dearle, A., Rosenberg, J., Henskens F., Vaughan, F., Maciunas, K.“An Examination of Operating
System Support for Persistent Object Systems”, Proceedings of the 25th Hawaii International Con-
ference on System Sciences, vol 1, 1992.

3. Douglis, F., Ousterhout, J.,“Transparent Process Migration: Design Alternatives and the Sprite
Implementation”, Software-Practice & Experience, 21(8): 757-785, August 1991.

4. Homburg, P., van Steen, M., Tanenbaum, A. S.“An Architecture for A Scalable Wide Area Distrib-
uted System”,Proceedings of the Seventh ACM SIGOPS European Workshop, ACM, New York,
pp. 75-82, 1996.

5. Hamilton, G., Kougiouris, P. “The Spring nucleus: A microkernel for objects”, Proceedings of the
1993 Summer Usenix Conference, June 1993.

6. Engler, D. R., Kaashoek, F., O’Toole Jr., J. “Exokernel: An Operating System Architecture for
Application-Level Resource Management”, Proceedings of the Fifteenth Symposium on Operating
Systems Principles, December 1995.

7. Tanenbaum, A. S.“Modern Operating Systems”, Prentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

8. Stallings, W. “Operating Systems, 2nd edition”, Prentice Hall, Englewood Cliffs, New Jersey
07632, 1995.

9. Rashid, R., Baron, R., Forin, A., Golub. A., Jones, M., Julin, D., Orr, D., Sanzi, R.,“Mach: A Foun-
dation for Open Systems.”, Proceedings of the Second Workshop on Workstation Operating Sys-
tems (WWOS2), 1989.

10.Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub, D., Jones, M.,“Mach: A Sys-
tem Software Kernel.”, Proceedings of the 34th Computer Society International Conference COMP-
CON 89, 1989.

11.“The Common Object Request Broker Architecture and Specification”, BNR Europe Ltd., 1995.

12.“NDS For NT”, Novell Inc., 1997.

13.Walli, S. R.“OPENNT: UNIX Application Portability to Windows NT via an Alternative Environ-
ment Subsystem”, Proceedings of the USENIX Windows NT workshop, Seattle, Washington, 1997.

14.“JavaStation NC. Slashing the Total Cost of Ownership for Fixed Function Applications”, Site on
the Web: http://www.sun.com/javasystems/krups/ , Sun Microsystems Inc., (Date Unknown).

15.“Sun Announces New HPC Server Clustering Capabilities Supporting up to 256 Processors”, SUN
press release, Palo Alto nov 11., 1997.

16.Wallström, M.“NT passerar Unix inom arbetsstationer”, Computer Sweden, 98-03-16.

17.Kessler, P. B. “A Client-Side Stub-Interpreter”, Proceedings of ACM Workshop on Interface Defini-
tion Languages, January 1994.

18.van Steen, M., Homburg, P., van Doorn, L., Tanenbaum, A. S., de Jonge, W. “Towards Object-based
Wide-Area Distributed Systems”, Proceedings of the Fourth International Workshop on Object Ori-
entation in Operating Systems, IEEE, New York, pp. 224-227, 1995.

19.van Steen, M., Hauck, F. J., Tanenbaum, A. S.,“A Model for Worldwide Tracking of Distributed
Objects”, Proceedings of TINA 96, Eurescom, pp. 203-212, 1996.

20.Higgs, B. J.“History of Object-Orientation in Programming Languages”, Lecture slides available
at: http://niagara.rivier.edu/staff/bhiggs/FrontPageWebs/OOPandCPP/history/history.htm , Rivier
College, 1998.

21.Brookshear, J. G.“Theory of Computation. Formal Languages, Automata, and Complexity”, Ben-
jamin-Cummings, 1989.

57

22.Higgs, B. J.“What Problems are We Trying to Solve? The Motivating Forces behind Object-Ori-
ented Programming and Design”, Lecture slides available at: http://niagara.rivier.edu/staff/bhiggs/
FrontPageWebs/OOPandCPP/why/why.htm, Rivier College, 1998.

23.Johansen, D., van Renesse, R., Schneider, F. B. “Operating System Support for Mobile Agents”,
Proceedings of the 5th IEEE Workshop on Hot Topics in Operating Systems, pp. 42-45, 1995.

24.Nwana, H. S.“Software Agents: An Overview”, Knowledge Engineering Review, Vol 11, No 3, pp.
205-244, October/November 1996.

25.Morrison, M.“Presenting JavaBeans”, Sams.net publishing, 1997.

26.Persson, E.“Component Technology. Infrastructures and Enabling Technologies - a Short Survey”,
LU-CS-TR:97-197, LUTEDX/(TECS-3078)/1-71/(1997), Department of Computer Science, Lund
University, 1997.

27.Fredriksson, M.“Agent Oriented Programming”, Unpublished paper, University of Karlskrona/
Ronneby, 1997.

28.Cohen, P. R., Cheyer, A., Wang, M., Baeg, S. C.“An Open Agent Architecture”, Proceedings of the
AAAI Spring Symposium on Software Agents, pp. 1-8, 1994.

29.Liu, J-S., Sycara, K. P. “Multiagent Coordination in Tightly Coupled Task Scheduling”, Proceed-
ings of the First International Conference on Multiagent Systems, pp. 181-188, 1996.

30.Labrou, Y., Finin, T. “Semantics and Conversations for an Agent Communication Language”, Pro-
ceedings of the Fifteenth International Conference on Artificial Intelligence, pp. 584-591, 1997.

31.McCabe, F. G., Clark, K. L.“April - Agent PRocess Interaction Language”, Department of Com-
puting, Imperial College, London, 1994.

32.Halsall, F. “Data Communications, Computer Networks and Open Systems, Fourth Edition”, Addi-
son-Wesley Publishing Company Inc., 1996.

33.Rus, D., Gray, R., Kotz, D. “Transportable Information Agents”, Proceedings of the International
Conference on Autonomous Agents, pp. 228-236, 1997.

34.Woolridge, M., Jennings, N. R.,“Pitfalls of Agent-Oriented Development”, Proceedings of 2nd
International Conference on Autonomous Agents (Agents-98), Minneapolis, USA. (to appear)

35.Ekdahl, B. “Computerized Agents from a Linguistic Perspective”, Ph.D. thesis, Department of
Computer Science, Lund University, 1997.

36.Ousterhout, J. K.“Tcl and the Tk Toolkit”, Addison-Wesley, Reading, Massachusetts, 1994.

37.Genesereth, M. R., Singh, N. R.“A Knowledge Sharing Approach to Software Interoperation”,
Computer Science Department, Stanford University, 1994.

38.“FIPA 97 Specification. Part 2: Agent Communication Language”, Foundation for Intelligent Phys-
ical Agents, Geneva, 1997.

39.Ford, B., Susarla, S.“CPU Inheritance Scheduling”, Proceedings of OSDI'96, October 1996.

40.Ballesteros, F. J., Fernández, L. L.“Advice: An Adaptable and Extensible Distributed Virtual Mem-
ory Architecture”, Proceedings of the IASTED PDCS'96, Chicago IL, 1997.

41.“Middleware -- The Essential Component for Enterprise Client/Server Applications”, International
Systems Group, Inc., New York, 1997.

42.“Java Remote Method Invocation - Distributed Computing for Java”, Sun Microsystems, Site on
the Web: http://java.sun.com/marketing/collateral/javarmi.html, 1998.

43.Fredriksson, M.“Active Documents and their Applicability in Distributed Environments”, Unpub-
lished Master’s Thesis, University of Karlskrona/Ronneby, Pending release 1998.

44.Mills, D. L. “Internet Time Synchronization: the Network Time Protocol”, IEEE Trans. Communi-
cations 39, 10 (October 1991), pp. 1482-1493, 1991.

58

45.Matthews, J. N., Roselli, D., Costello, A. M., Wang, R. Y., Anderson, T. E. “Improving the Perfor-
mance of Log-Structured File Systems with Adaptive methods”, Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, 1997.

46.Ward, B.“The Linux Kernel HOWTO”, Site on the Web: ftp://ftp.funet.fi/pub/Linux/doc/HOWTO/
Kernel-HOWTO , 1997.

47.Barrus, F., “Shag/OS: A Small, Dynamic, Object-Oriented, MicroKernel-based Operating System”,
Unpublished study-project proposal, Rochester Institute of Technology, 1995.

48.van Doorn, L., Homburg, P., Tanenbaum, A. S.“Paramecium: An extensible object-based kernel”,
Proceedings of Hot Topics in Operating Systems V, ACM, New York, pp. 86-89, 1995.

49.Homburg, P., van Steen, M., Tanenbaum, A. S.,“The Architectural Design of GLOBE: A Wide-Area
Distributed System”, Technical Report IR-422, Vrije Universiteit Amsterdam, 1997.

50.Russinovich, M. “Inside the Windows NT Scheduler, Part 1 & 2”, Windows NT Magazine, July &
August 1997.

51.“Norton Your Eyes Only 4.1 for Windows NT/Windows 95”, Symantec Corporation, Site on the
Web: http://www.symantec.com/yeo/fs_yeo41-95nt.html , (Date unknown).

52.“NFS Software from Sun: Bringing the Enterprise to your Desktop”, Sun Microsystems, Site on the
Web: http://www.sun.com/netclient/wp-nfs.sw/ , (Date unknown).

53.Hall, F., Hellspong, M.“EPIDEMIC: A Framework for Object Oriented Compiler Construction”,
Unpublished Master’s Thesis, University of Karlskrona/Ronneby, 1998.

